The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields

Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-03, Vol.892 (1), p.59
Hauptverfasser: Cottle, J'Neil, Scannapieco, Evan, Brüggen, Marcus, Banda-Barragán, Wladimir, Federrath, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 59
container_title The Astrophysical journal
container_volume 892
creator Cottle, J'Neil
Scannapieco, Evan
Brüggen, Marcus
Banda-Barragán, Wladimir
Federrath, Christoph
description Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.
doi_str_mv 10.3847/1538-4357/ab76d1
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab76d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384572232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3jwE92q1Nml9HKW4WKrtM8RbSJtk6alObFt1_b0tFL-Lp4_t43veDB4DrKFxgHrNlRDAPYkzYUuWM6ugEzH5Op2AWhmEcUMxez8GF94dxRULMwMt2b2Cm-rrYl_UOOgsTV2mYVK7XHuZHuFaV-jzCTd_Zyn34BUzTdAHHVFrbqjd1YcbUk9rVpisLuCpNpf0lOLOq8ubqe87B8-phmzwG2WadJvdZUMQx6QJqDdVCCJbTnMZaa2OJzjlTzHLMGUOFJkRYHSqOKGWCYKs4JdogHQlkYjwHN1Nv07r33vhOHlzf1sNLiQYthCGE0UCFE1W0zvvWWNm05ZtqjzIK5WhPjqrkqEpO9obI3RQpXfPb-Q9--weumoPkAslIEiEbbfEXOo17uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384572232</pqid></control><display><type>article</type><title>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</title><source>IOP Publishing Free Content</source><creator>Cottle, J'Neil ; Scannapieco, Evan ; Brüggen, Marcus ; Banda-Barragán, Wladimir ; Federrath, Christoph</creator><creatorcontrib>Cottle, J'Neil ; Scannapieco, Evan ; Brüggen, Marcus ; Banda-Barragán, Wladimir ; Federrath, Christoph</creatorcontrib><description>Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab76d1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Circumgalactic medium ; Clouds ; Computer simulation ; Cooling ; Cooling effects ; Finite element method ; Galactic winds ; Galaxies ; Grid refinement (mathematics) ; Magnetic fields ; Magnetic properties ; Magnetohydrodynamics ; Radiative cooling ; Radiative magnetohydrodynamics ; Simulation ; Stars &amp; galaxies ; Wind</subject><ispartof>The Astrophysical journal, 2020-03, Vol.892 (1), p.59</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 20, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</citedby><cites>FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</cites><orcidid>0000-0002-3193-1196 ; 0000-0002-0706-2306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab76d1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab76d1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Cottle, J'Neil</creatorcontrib><creatorcontrib>Scannapieco, Evan</creatorcontrib><creatorcontrib>Brüggen, Marcus</creatorcontrib><creatorcontrib>Banda-Barragán, Wladimir</creatorcontrib><creatorcontrib>Federrath, Christoph</creatorcontrib><title>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.</description><subject>Astrophysics</subject><subject>Circumgalactic medium</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Finite element method</subject><subject>Galactic winds</subject><subject>Galaxies</subject><subject>Grid refinement (mathematics)</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Radiative cooling</subject><subject>Radiative magnetohydrodynamics</subject><subject>Simulation</subject><subject>Stars &amp; galaxies</subject><subject>Wind</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3jwE92q1Nml9HKW4WKrtM8RbSJtk6alObFt1_b0tFL-Lp4_t43veDB4DrKFxgHrNlRDAPYkzYUuWM6ugEzH5Op2AWhmEcUMxez8GF94dxRULMwMt2b2Cm-rrYl_UOOgsTV2mYVK7XHuZHuFaV-jzCTd_Zyn34BUzTdAHHVFrbqjd1YcbUk9rVpisLuCpNpf0lOLOq8ubqe87B8-phmzwG2WadJvdZUMQx6QJqDdVCCJbTnMZaa2OJzjlTzHLMGUOFJkRYHSqOKGWCYKs4JdogHQlkYjwHN1Nv07r33vhOHlzf1sNLiQYthCGE0UCFE1W0zvvWWNm05ZtqjzIK5WhPjqrkqEpO9obI3RQpXfPb-Q9--weumoPkAslIEiEbbfEXOo17uQ</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Cottle, J'Neil</creator><creator>Scannapieco, Evan</creator><creator>Brüggen, Marcus</creator><creator>Banda-Barragán, Wladimir</creator><creator>Federrath, Christoph</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3193-1196</orcidid><orcidid>https://orcid.org/0000-0002-0706-2306</orcidid></search><sort><creationdate>20200320</creationdate><title>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</title><author>Cottle, J'Neil ; Scannapieco, Evan ; Brüggen, Marcus ; Banda-Barragán, Wladimir ; Federrath, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Circumgalactic medium</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Finite element method</topic><topic>Galactic winds</topic><topic>Galaxies</topic><topic>Grid refinement (mathematics)</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Radiative cooling</topic><topic>Radiative magnetohydrodynamics</topic><topic>Simulation</topic><topic>Stars &amp; galaxies</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cottle, J'Neil</creatorcontrib><creatorcontrib>Scannapieco, Evan</creatorcontrib><creatorcontrib>Brüggen, Marcus</creatorcontrib><creatorcontrib>Banda-Barragán, Wladimir</creatorcontrib><creatorcontrib>Federrath, Christoph</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cottle, J'Neil</au><au>Scannapieco, Evan</au><au>Brüggen, Marcus</au><au>Banda-Barragán, Wladimir</au><au>Federrath, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>892</volume><issue>1</issue><spage>59</spage><pages>59-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab76d1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3193-1196</orcidid><orcidid>https://orcid.org/0000-0002-0706-2306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-03, Vol.892 (1), p.59
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ab76d1
source IOP Publishing Free Content
subjects Astrophysics
Circumgalactic medium
Clouds
Computer simulation
Cooling
Cooling effects
Finite element method
Galactic winds
Galaxies
Grid refinement (mathematics)
Magnetic fields
Magnetic properties
Magnetohydrodynamics
Radiative cooling
Radiative magnetohydrodynamics
Simulation
Stars & galaxies
Wind
title The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Launching%20of%20Cold%20Clouds%20by%20Galaxy%20Outflows.%20III.%20The%20Influence%20of%20Magnetic%20Fields&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cottle,%20J'Neil&rft.date=2020-03-20&rft.volume=892&rft.issue=1&rft.spage=59&rft.pages=59-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab76d1&rft_dat=%3Cproquest_O3W%3E2384572232%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384572232&rft_id=info:pmid/&rfr_iscdi=true