The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields
Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-03, Vol.892 (1), p.59 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | The Astrophysical journal |
container_volume | 892 |
creator | Cottle, J'Neil Scannapieco, Evan Brüggen, Marcus Banda-Barragán, Wladimir Federrath, Christoph |
description | Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone. |
doi_str_mv | 10.3847/1538-4357/ab76d1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab76d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384572232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3jwE92q1Nml9HKW4WKrtM8RbSJtk6alObFt1_b0tFL-Lp4_t43veDB4DrKFxgHrNlRDAPYkzYUuWM6ugEzH5Op2AWhmEcUMxez8GF94dxRULMwMt2b2Cm-rrYl_UOOgsTV2mYVK7XHuZHuFaV-jzCTd_Zyn34BUzTdAHHVFrbqjd1YcbUk9rVpisLuCpNpf0lOLOq8ubqe87B8-phmzwG2WadJvdZUMQx6QJqDdVCCJbTnMZaa2OJzjlTzHLMGUOFJkRYHSqOKGWCYKs4JdogHQlkYjwHN1Nv07r33vhOHlzf1sNLiQYthCGE0UCFE1W0zvvWWNm05ZtqjzIK5WhPjqrkqEpO9obI3RQpXfPb-Q9--weumoPkAslIEiEbbfEXOo17uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384572232</pqid></control><display><type>article</type><title>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</title><source>IOP Publishing Free Content</source><creator>Cottle, J'Neil ; Scannapieco, Evan ; Brüggen, Marcus ; Banda-Barragán, Wladimir ; Federrath, Christoph</creator><creatorcontrib>Cottle, J'Neil ; Scannapieco, Evan ; Brüggen, Marcus ; Banda-Barragán, Wladimir ; Federrath, Christoph</creatorcontrib><description>Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab76d1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Circumgalactic medium ; Clouds ; Computer simulation ; Cooling ; Cooling effects ; Finite element method ; Galactic winds ; Galaxies ; Grid refinement (mathematics) ; Magnetic fields ; Magnetic properties ; Magnetohydrodynamics ; Radiative cooling ; Radiative magnetohydrodynamics ; Simulation ; Stars & galaxies ; Wind</subject><ispartof>The Astrophysical journal, 2020-03, Vol.892 (1), p.59</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 20, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</citedby><cites>FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</cites><orcidid>0000-0002-3193-1196 ; 0000-0002-0706-2306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab76d1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab76d1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Cottle, J'Neil</creatorcontrib><creatorcontrib>Scannapieco, Evan</creatorcontrib><creatorcontrib>Brüggen, Marcus</creatorcontrib><creatorcontrib>Banda-Barragán, Wladimir</creatorcontrib><creatorcontrib>Federrath, Christoph</creatorcontrib><title>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.</description><subject>Astrophysics</subject><subject>Circumgalactic medium</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Finite element method</subject><subject>Galactic winds</subject><subject>Galaxies</subject><subject>Grid refinement (mathematics)</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Radiative cooling</subject><subject>Radiative magnetohydrodynamics</subject><subject>Simulation</subject><subject>Stars & galaxies</subject><subject>Wind</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3jwE92q1Nml9HKW4WKrtM8RbSJtk6alObFt1_b0tFL-Lp4_t43veDB4DrKFxgHrNlRDAPYkzYUuWM6ugEzH5Op2AWhmEcUMxez8GF94dxRULMwMt2b2Cm-rrYl_UOOgsTV2mYVK7XHuZHuFaV-jzCTd_Zyn34BUzTdAHHVFrbqjd1YcbUk9rVpisLuCpNpf0lOLOq8ubqe87B8-phmzwG2WadJvdZUMQx6QJqDdVCCJbTnMZaa2OJzjlTzHLMGUOFJkRYHSqOKGWCYKs4JdogHQlkYjwHN1Nv07r33vhOHlzf1sNLiQYthCGE0UCFE1W0zvvWWNm05ZtqjzIK5WhPjqrkqEpO9obI3RQpXfPb-Q9--weumoPkAslIEiEbbfEXOo17uQ</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Cottle, J'Neil</creator><creator>Scannapieco, Evan</creator><creator>Brüggen, Marcus</creator><creator>Banda-Barragán, Wladimir</creator><creator>Federrath, Christoph</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3193-1196</orcidid><orcidid>https://orcid.org/0000-0002-0706-2306</orcidid></search><sort><creationdate>20200320</creationdate><title>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</title><author>Cottle, J'Neil ; Scannapieco, Evan ; Brüggen, Marcus ; Banda-Barragán, Wladimir ; Federrath, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6fe6d9997b6b64dddef5db87a7f838772cd559fd0a82667953fa865de2d192e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Circumgalactic medium</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Finite element method</topic><topic>Galactic winds</topic><topic>Galaxies</topic><topic>Grid refinement (mathematics)</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Radiative cooling</topic><topic>Radiative magnetohydrodynamics</topic><topic>Simulation</topic><topic>Stars & galaxies</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cottle, J'Neil</creatorcontrib><creatorcontrib>Scannapieco, Evan</creatorcontrib><creatorcontrib>Brüggen, Marcus</creatorcontrib><creatorcontrib>Banda-Barragán, Wladimir</creatorcontrib><creatorcontrib>Federrath, Christoph</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cottle, J'Neil</au><au>Scannapieco, Evan</au><au>Brüggen, Marcus</au><au>Banda-Barragán, Wladimir</au><au>Federrath, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>892</volume><issue>1</issue><spage>59</spage><pages>59-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab76d1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3193-1196</orcidid><orcidid>https://orcid.org/0000-0002-0706-2306</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-03, Vol.892 (1), p.59 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ab76d1 |
source | IOP Publishing Free Content |
subjects | Astrophysics Circumgalactic medium Clouds Computer simulation Cooling Cooling effects Finite element method Galactic winds Galaxies Grid refinement (mathematics) Magnetic fields Magnetic properties Magnetohydrodynamics Radiative cooling Radiative magnetohydrodynamics Simulation Stars & galaxies Wind |
title | The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Launching%20of%20Cold%20Clouds%20by%20Galaxy%20Outflows.%20III.%20The%20Influence%20of%20Magnetic%20Fields&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cottle,%20J'Neil&rft.date=2020-03-20&rft.volume=892&rft.issue=1&rft.spage=59&rft.pages=59-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab76d1&rft_dat=%3Cproquest_O3W%3E2384572232%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384572232&rft_id=info:pmid/&rfr_iscdi=true |