Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST

The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-02, Vol.890 (2), p.176
Hauptverfasser: Venot, Olivia, Parmentier, Vivien, Blecic, Jasmina, Cubillos, Patricio E., Waldmann, Ingo P., Changeat, Quentin, Moses, Julianne I., Tremblin, Pascal, Crouzet, Nicolas, Gao, Peter, Powell, Diana, Lagage, Pierre-Olivier, Dobbs-Dixon, Ian, Steinrueck, Maria E., Kreidberg, Laura, Batalha, Natalie, Bean, Jacob L., Stevenson, Kevin B., Casewell, Sarah, Carone, Ludmila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 176
container_title The Astrophysical journal
container_volume 890
creator Venot, Olivia
Parmentier, Vivien
Blecic, Jasmina
Cubillos, Patricio E.
Waldmann, Ingo P.
Changeat, Quentin
Moses, Julianne I.
Tremblin, Pascal
Crouzet, Nicolas
Gao, Peter
Powell, Diana
Lagage, Pierre-Olivier
Dobbs-Dixon, Ian
Steinrueck, Maria E.
Kreidberg, Laura
Batalha, Natalie
Bean, Jacob L.
Stevenson, Kevin B.
Casewell, Sarah
Carone, Ludmila
description The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.
doi_str_mv 10.3847/1538-4357/ab6a94
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab6a94</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392588806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKd3jwHxIFiXJm2THMfQTZk4WGHeQpqktKNbapoK--9trcyLePryPX7vfeEBcB2iB8IiOgljwoKIxHQis0Ty6ASMjtIpGCGEoiAh9P0cXDTNtl8x5yOg5pXNZAVnhdmVjXcHKPcapoVxu05de9cq3zoDX602VQNz66AvDFxYD1_auvTGwc10verOZN_OlTO6VL60-wF-2azTS3CWy6oxVz9zDNKnx3S2CJZv8-fZdBmoiCEfUEQSwrMcqxgjEuec6SzBkWRGqUiaDCktJc6ISrqXpqHBWvMYEUq4JFFOxuBuiC1kJWpX7qQ7CCtLsZguRa8hghCPKf4MO_ZmYGtnP1rTeLG1rdt3vxOYcBwzxlDSUWiglLNN40x-jA2R6FsXfcWir1gMrXeW-8FS2vo38x_89g9c1lvBOBJYhDQRtc7JF-eDjn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392588806</pqid></control><display><type>article</type><title>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</title><source>IOP Publishing Free Content</source><creator>Venot, Olivia ; Parmentier, Vivien ; Blecic, Jasmina ; Cubillos, Patricio E. ; Waldmann, Ingo P. ; Changeat, Quentin ; Moses, Julianne I. ; Tremblin, Pascal ; Crouzet, Nicolas ; Gao, Peter ; Powell, Diana ; Lagage, Pierre-Olivier ; Dobbs-Dixon, Ian ; Steinrueck, Maria E. ; Kreidberg, Laura ; Batalha, Natalie ; Bean, Jacob L. ; Stevenson, Kevin B. ; Casewell, Sarah ; Carone, Ludmila</creator><creatorcontrib>Venot, Olivia ; Parmentier, Vivien ; Blecic, Jasmina ; Cubillos, Patricio E. ; Waldmann, Ingo P. ; Changeat, Quentin ; Moses, Julianne I. ; Tremblin, Pascal ; Crouzet, Nicolas ; Gao, Peter ; Powell, Diana ; Lagage, Pierre-Olivier ; Dobbs-Dixon, Ian ; Steinrueck, Maria E. ; Kreidberg, Laura ; Batalha, Natalie ; Bean, Jacob L. ; Stevenson, Kevin B. ; Casewell, Sarah ; Carone, Ludmila</creatorcontrib><description>The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab6a94</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmosphere ; Atmospheric circulation ; Atmospheric models ; Chemical composition ; Chemical kinetics ; Cloud microphysics ; Clouds ; Computer simulation ; Emission measurements ; Exoplanet atmospheres ; Exoplanet atmospheric composition ; Exoplanet structure ; Extrasolar planets ; Flight simulators ; Gas giant planets ; James Webb Space Telescope ; Jupiter ; Jupiter atmosphere ; Microphysics ; Planetary atmospheres ; Planetary orbits ; Radiative transfer ; Reaction kinetics ; Retrieval ; Sciences of the Universe ; Space telescopes ; Temperature gradients ; Transit</subject><ispartof>The Astrophysical journal, 2020-02, Vol.890 (2), p.176</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 20, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</citedby><cites>FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</cites><orcidid>0000-0001-8342-1895 ; 0000-0002-7030-9519 ; 0000-0001-6516-4493 ; 0000-0003-0514-1147 ; 0000-0003-2854-765X ; 0000-0002-0769-9614 ; 0000-0002-4250-0957 ; 0000-0001-6172-3403 ; 0000-0001-9521-6258 ; 0000-0002-7352-7941 ; 0000-0002-1347-2600 ; 0000-0002-4205-5267 ; 0000-0001-7866-8738 ; 0000-0002-8837-0035 ; 0000-0002-8518-9601 ; 0000-0003-2478-0120 ; 0000-0003-4733-6532 ; 0000-0001-9355-3752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6a94/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6a94$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-03009572$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Venot, Olivia</creatorcontrib><creatorcontrib>Parmentier, Vivien</creatorcontrib><creatorcontrib>Blecic, Jasmina</creatorcontrib><creatorcontrib>Cubillos, Patricio E.</creatorcontrib><creatorcontrib>Waldmann, Ingo P.</creatorcontrib><creatorcontrib>Changeat, Quentin</creatorcontrib><creatorcontrib>Moses, Julianne I.</creatorcontrib><creatorcontrib>Tremblin, Pascal</creatorcontrib><creatorcontrib>Crouzet, Nicolas</creatorcontrib><creatorcontrib>Gao, Peter</creatorcontrib><creatorcontrib>Powell, Diana</creatorcontrib><creatorcontrib>Lagage, Pierre-Olivier</creatorcontrib><creatorcontrib>Dobbs-Dixon, Ian</creatorcontrib><creatorcontrib>Steinrueck, Maria E.</creatorcontrib><creatorcontrib>Kreidberg, Laura</creatorcontrib><creatorcontrib>Batalha, Natalie</creatorcontrib><creatorcontrib>Bean, Jacob L.</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Casewell, Sarah</creatorcontrib><creatorcontrib>Carone, Ludmila</creatorcontrib><title>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.</description><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Chemical composition</subject><subject>Chemical kinetics</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Emission measurements</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanet atmospheric composition</subject><subject>Exoplanet structure</subject><subject>Extrasolar planets</subject><subject>Flight simulators</subject><subject>Gas giant planets</subject><subject>James Webb Space Telescope</subject><subject>Jupiter</subject><subject>Jupiter atmosphere</subject><subject>Microphysics</subject><subject>Planetary atmospheres</subject><subject>Planetary orbits</subject><subject>Radiative transfer</subject><subject>Reaction kinetics</subject><subject>Retrieval</subject><subject>Sciences of the Universe</subject><subject>Space telescopes</subject><subject>Temperature gradients</subject><subject>Transit</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAYxYMoOKd3jwHxIFiXJm2THMfQTZk4WGHeQpqktKNbapoK--9trcyLePryPX7vfeEBcB2iB8IiOgljwoKIxHQis0Ty6ASMjtIpGCGEoiAh9P0cXDTNtl8x5yOg5pXNZAVnhdmVjXcHKPcapoVxu05de9cq3zoDX602VQNz66AvDFxYD1_auvTGwc10verOZN_OlTO6VL60-wF-2azTS3CWy6oxVz9zDNKnx3S2CJZv8-fZdBmoiCEfUEQSwrMcqxgjEuec6SzBkWRGqUiaDCktJc6ISrqXpqHBWvMYEUq4JFFOxuBuiC1kJWpX7qQ7CCtLsZguRa8hghCPKf4MO_ZmYGtnP1rTeLG1rdt3vxOYcBwzxlDSUWiglLNN40x-jA2R6FsXfcWir1gMrXeW-8FS2vo38x_89g9c1lvBOBJYhDQRtc7JF-eDjn4</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Venot, Olivia</creator><creator>Parmentier, Vivien</creator><creator>Blecic, Jasmina</creator><creator>Cubillos, Patricio E.</creator><creator>Waldmann, Ingo P.</creator><creator>Changeat, Quentin</creator><creator>Moses, Julianne I.</creator><creator>Tremblin, Pascal</creator><creator>Crouzet, Nicolas</creator><creator>Gao, Peter</creator><creator>Powell, Diana</creator><creator>Lagage, Pierre-Olivier</creator><creator>Dobbs-Dixon, Ian</creator><creator>Steinrueck, Maria E.</creator><creator>Kreidberg, Laura</creator><creator>Batalha, Natalie</creator><creator>Bean, Jacob L.</creator><creator>Stevenson, Kevin B.</creator><creator>Casewell, Sarah</creator><creator>Carone, Ludmila</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8342-1895</orcidid><orcidid>https://orcid.org/0000-0002-7030-9519</orcidid><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-0514-1147</orcidid><orcidid>https://orcid.org/0000-0003-2854-765X</orcidid><orcidid>https://orcid.org/0000-0002-0769-9614</orcidid><orcidid>https://orcid.org/0000-0002-4250-0957</orcidid><orcidid>https://orcid.org/0000-0001-6172-3403</orcidid><orcidid>https://orcid.org/0000-0001-9521-6258</orcidid><orcidid>https://orcid.org/0000-0002-7352-7941</orcidid><orcidid>https://orcid.org/0000-0002-1347-2600</orcidid><orcidid>https://orcid.org/0000-0002-4205-5267</orcidid><orcidid>https://orcid.org/0000-0001-7866-8738</orcidid><orcidid>https://orcid.org/0000-0002-8837-0035</orcidid><orcidid>https://orcid.org/0000-0002-8518-9601</orcidid><orcidid>https://orcid.org/0000-0003-2478-0120</orcidid><orcidid>https://orcid.org/0000-0003-4733-6532</orcidid><orcidid>https://orcid.org/0000-0001-9355-3752</orcidid></search><sort><creationdate>20200220</creationdate><title>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</title><author>Venot, Olivia ; Parmentier, Vivien ; Blecic, Jasmina ; Cubillos, Patricio E. ; Waldmann, Ingo P. ; Changeat, Quentin ; Moses, Julianne I. ; Tremblin, Pascal ; Crouzet, Nicolas ; Gao, Peter ; Powell, Diana ; Lagage, Pierre-Olivier ; Dobbs-Dixon, Ian ; Steinrueck, Maria E. ; Kreidberg, Laura ; Batalha, Natalie ; Bean, Jacob L. ; Stevenson, Kevin B. ; Casewell, Sarah ; Carone, Ludmila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Chemical composition</topic><topic>Chemical kinetics</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Emission measurements</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanet atmospheric composition</topic><topic>Exoplanet structure</topic><topic>Extrasolar planets</topic><topic>Flight simulators</topic><topic>Gas giant planets</topic><topic>James Webb Space Telescope</topic><topic>Jupiter</topic><topic>Jupiter atmosphere</topic><topic>Microphysics</topic><topic>Planetary atmospheres</topic><topic>Planetary orbits</topic><topic>Radiative transfer</topic><topic>Reaction kinetics</topic><topic>Retrieval</topic><topic>Sciences of the Universe</topic><topic>Space telescopes</topic><topic>Temperature gradients</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venot, Olivia</creatorcontrib><creatorcontrib>Parmentier, Vivien</creatorcontrib><creatorcontrib>Blecic, Jasmina</creatorcontrib><creatorcontrib>Cubillos, Patricio E.</creatorcontrib><creatorcontrib>Waldmann, Ingo P.</creatorcontrib><creatorcontrib>Changeat, Quentin</creatorcontrib><creatorcontrib>Moses, Julianne I.</creatorcontrib><creatorcontrib>Tremblin, Pascal</creatorcontrib><creatorcontrib>Crouzet, Nicolas</creatorcontrib><creatorcontrib>Gao, Peter</creatorcontrib><creatorcontrib>Powell, Diana</creatorcontrib><creatorcontrib>Lagage, Pierre-Olivier</creatorcontrib><creatorcontrib>Dobbs-Dixon, Ian</creatorcontrib><creatorcontrib>Steinrueck, Maria E.</creatorcontrib><creatorcontrib>Kreidberg, Laura</creatorcontrib><creatorcontrib>Batalha, Natalie</creatorcontrib><creatorcontrib>Bean, Jacob L.</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Casewell, Sarah</creatorcontrib><creatorcontrib>Carone, Ludmila</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Venot, Olivia</au><au>Parmentier, Vivien</au><au>Blecic, Jasmina</au><au>Cubillos, Patricio E.</au><au>Waldmann, Ingo P.</au><au>Changeat, Quentin</au><au>Moses, Julianne I.</au><au>Tremblin, Pascal</au><au>Crouzet, Nicolas</au><au>Gao, Peter</au><au>Powell, Diana</au><au>Lagage, Pierre-Olivier</au><au>Dobbs-Dixon, Ian</au><au>Steinrueck, Maria E.</au><au>Kreidberg, Laura</au><au>Batalha, Natalie</au><au>Bean, Jacob L.</au><au>Stevenson, Kevin B.</au><au>Casewell, Sarah</au><au>Carone, Ludmila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-02-20</date><risdate>2020</risdate><volume>890</volume><issue>2</issue><spage>176</spage><pages>176-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab6a94</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8342-1895</orcidid><orcidid>https://orcid.org/0000-0002-7030-9519</orcidid><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-0514-1147</orcidid><orcidid>https://orcid.org/0000-0003-2854-765X</orcidid><orcidid>https://orcid.org/0000-0002-0769-9614</orcidid><orcidid>https://orcid.org/0000-0002-4250-0957</orcidid><orcidid>https://orcid.org/0000-0001-6172-3403</orcidid><orcidid>https://orcid.org/0000-0001-9521-6258</orcidid><orcidid>https://orcid.org/0000-0002-7352-7941</orcidid><orcidid>https://orcid.org/0000-0002-1347-2600</orcidid><orcidid>https://orcid.org/0000-0002-4205-5267</orcidid><orcidid>https://orcid.org/0000-0001-7866-8738</orcidid><orcidid>https://orcid.org/0000-0002-8837-0035</orcidid><orcidid>https://orcid.org/0000-0002-8518-9601</orcidid><orcidid>https://orcid.org/0000-0003-2478-0120</orcidid><orcidid>https://orcid.org/0000-0003-4733-6532</orcidid><orcidid>https://orcid.org/0000-0001-9355-3752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-02, Vol.890 (2), p.176
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ab6a94
source IOP Publishing Free Content
subjects Astrophysics
Atmosphere
Atmospheric circulation
Atmospheric models
Chemical composition
Chemical kinetics
Cloud microphysics
Clouds
Computer simulation
Emission measurements
Exoplanet atmospheres
Exoplanet atmospheric composition
Exoplanet structure
Extrasolar planets
Flight simulators
Gas giant planets
James Webb Space Telescope
Jupiter
Jupiter atmosphere
Microphysics
Planetary atmospheres
Planetary orbits
Radiative transfer
Reaction kinetics
Retrieval
Sciences of the Universe
Space telescopes
Temperature gradients
Transit
title Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Chemistry%20and%20Thermal%20Structure%20Models%20for%20the%20Hot%20Jupiter%20WASP-43b%20and%20Predictions%20for%20JWST&rft.jtitle=The%20Astrophysical%20journal&rft.au=Venot,%20Olivia&rft.date=2020-02-20&rft.volume=890&rft.issue=2&rft.spage=176&rft.pages=176-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab6a94&rft_dat=%3Cproquest_O3W%3E2392588806%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392588806&rft_id=info:pmid/&rfr_iscdi=true