Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST
The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-02, Vol.890 (2), p.176 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 176 |
container_title | The Astrophysical journal |
container_volume | 890 |
creator | Venot, Olivia Parmentier, Vivien Blecic, Jasmina Cubillos, Patricio E. Waldmann, Ingo P. Changeat, Quentin Moses, Julianne I. Tremblin, Pascal Crouzet, Nicolas Gao, Peter Powell, Diana Lagage, Pierre-Olivier Dobbs-Dixon, Ian Steinrueck, Maria E. Kreidberg, Laura Batalha, Natalie Bean, Jacob L. Stevenson, Kevin B. Casewell, Sarah Carone, Ludmila |
description | The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition. |
doi_str_mv | 10.3847/1538-4357/ab6a94 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab6a94</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392588806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKd3jwHxIFiXJm2THMfQTZk4WGHeQpqktKNbapoK--9trcyLePryPX7vfeEBcB2iB8IiOgljwoKIxHQis0Ty6ASMjtIpGCGEoiAh9P0cXDTNtl8x5yOg5pXNZAVnhdmVjXcHKPcapoVxu05de9cq3zoDX602VQNz66AvDFxYD1_auvTGwc10verOZN_OlTO6VL60-wF-2azTS3CWy6oxVz9zDNKnx3S2CJZv8-fZdBmoiCEfUEQSwrMcqxgjEuec6SzBkWRGqUiaDCktJc6ISrqXpqHBWvMYEUq4JFFOxuBuiC1kJWpX7qQ7CCtLsZguRa8hghCPKf4MO_ZmYGtnP1rTeLG1rdt3vxOYcBwzxlDSUWiglLNN40x-jA2R6FsXfcWir1gMrXeW-8FS2vo38x_89g9c1lvBOBJYhDQRtc7JF-eDjn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392588806</pqid></control><display><type>article</type><title>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</title><source>IOP Publishing Free Content</source><creator>Venot, Olivia ; Parmentier, Vivien ; Blecic, Jasmina ; Cubillos, Patricio E. ; Waldmann, Ingo P. ; Changeat, Quentin ; Moses, Julianne I. ; Tremblin, Pascal ; Crouzet, Nicolas ; Gao, Peter ; Powell, Diana ; Lagage, Pierre-Olivier ; Dobbs-Dixon, Ian ; Steinrueck, Maria E. ; Kreidberg, Laura ; Batalha, Natalie ; Bean, Jacob L. ; Stevenson, Kevin B. ; Casewell, Sarah ; Carone, Ludmila</creator><creatorcontrib>Venot, Olivia ; Parmentier, Vivien ; Blecic, Jasmina ; Cubillos, Patricio E. ; Waldmann, Ingo P. ; Changeat, Quentin ; Moses, Julianne I. ; Tremblin, Pascal ; Crouzet, Nicolas ; Gao, Peter ; Powell, Diana ; Lagage, Pierre-Olivier ; Dobbs-Dixon, Ian ; Steinrueck, Maria E. ; Kreidberg, Laura ; Batalha, Natalie ; Bean, Jacob L. ; Stevenson, Kevin B. ; Casewell, Sarah ; Carone, Ludmila</creatorcontrib><description>The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab6a94</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmosphere ; Atmospheric circulation ; Atmospheric models ; Chemical composition ; Chemical kinetics ; Cloud microphysics ; Clouds ; Computer simulation ; Emission measurements ; Exoplanet atmospheres ; Exoplanet atmospheric composition ; Exoplanet structure ; Extrasolar planets ; Flight simulators ; Gas giant planets ; James Webb Space Telescope ; Jupiter ; Jupiter atmosphere ; Microphysics ; Planetary atmospheres ; Planetary orbits ; Radiative transfer ; Reaction kinetics ; Retrieval ; Sciences of the Universe ; Space telescopes ; Temperature gradients ; Transit</subject><ispartof>The Astrophysical journal, 2020-02, Vol.890 (2), p.176</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 20, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</citedby><cites>FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</cites><orcidid>0000-0001-8342-1895 ; 0000-0002-7030-9519 ; 0000-0001-6516-4493 ; 0000-0003-0514-1147 ; 0000-0003-2854-765X ; 0000-0002-0769-9614 ; 0000-0002-4250-0957 ; 0000-0001-6172-3403 ; 0000-0001-9521-6258 ; 0000-0002-7352-7941 ; 0000-0002-1347-2600 ; 0000-0002-4205-5267 ; 0000-0001-7866-8738 ; 0000-0002-8837-0035 ; 0000-0002-8518-9601 ; 0000-0003-2478-0120 ; 0000-0003-4733-6532 ; 0000-0001-9355-3752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6a94/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6a94$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-03009572$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Venot, Olivia</creatorcontrib><creatorcontrib>Parmentier, Vivien</creatorcontrib><creatorcontrib>Blecic, Jasmina</creatorcontrib><creatorcontrib>Cubillos, Patricio E.</creatorcontrib><creatorcontrib>Waldmann, Ingo P.</creatorcontrib><creatorcontrib>Changeat, Quentin</creatorcontrib><creatorcontrib>Moses, Julianne I.</creatorcontrib><creatorcontrib>Tremblin, Pascal</creatorcontrib><creatorcontrib>Crouzet, Nicolas</creatorcontrib><creatorcontrib>Gao, Peter</creatorcontrib><creatorcontrib>Powell, Diana</creatorcontrib><creatorcontrib>Lagage, Pierre-Olivier</creatorcontrib><creatorcontrib>Dobbs-Dixon, Ian</creatorcontrib><creatorcontrib>Steinrueck, Maria E.</creatorcontrib><creatorcontrib>Kreidberg, Laura</creatorcontrib><creatorcontrib>Batalha, Natalie</creatorcontrib><creatorcontrib>Bean, Jacob L.</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Casewell, Sarah</creatorcontrib><creatorcontrib>Carone, Ludmila</creatorcontrib><title>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.</description><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Chemical composition</subject><subject>Chemical kinetics</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Emission measurements</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanet atmospheric composition</subject><subject>Exoplanet structure</subject><subject>Extrasolar planets</subject><subject>Flight simulators</subject><subject>Gas giant planets</subject><subject>James Webb Space Telescope</subject><subject>Jupiter</subject><subject>Jupiter atmosphere</subject><subject>Microphysics</subject><subject>Planetary atmospheres</subject><subject>Planetary orbits</subject><subject>Radiative transfer</subject><subject>Reaction kinetics</subject><subject>Retrieval</subject><subject>Sciences of the Universe</subject><subject>Space telescopes</subject><subject>Temperature gradients</subject><subject>Transit</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAYxYMoOKd3jwHxIFiXJm2THMfQTZk4WGHeQpqktKNbapoK--9trcyLePryPX7vfeEBcB2iB8IiOgljwoKIxHQis0Ty6ASMjtIpGCGEoiAh9P0cXDTNtl8x5yOg5pXNZAVnhdmVjXcHKPcapoVxu05de9cq3zoDX602VQNz66AvDFxYD1_auvTGwc10verOZN_OlTO6VL60-wF-2azTS3CWy6oxVz9zDNKnx3S2CJZv8-fZdBmoiCEfUEQSwrMcqxgjEuec6SzBkWRGqUiaDCktJc6ISrqXpqHBWvMYEUq4JFFOxuBuiC1kJWpX7qQ7CCtLsZguRa8hghCPKf4MO_ZmYGtnP1rTeLG1rdt3vxOYcBwzxlDSUWiglLNN40x-jA2R6FsXfcWir1gMrXeW-8FS2vo38x_89g9c1lvBOBJYhDQRtc7JF-eDjn4</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Venot, Olivia</creator><creator>Parmentier, Vivien</creator><creator>Blecic, Jasmina</creator><creator>Cubillos, Patricio E.</creator><creator>Waldmann, Ingo P.</creator><creator>Changeat, Quentin</creator><creator>Moses, Julianne I.</creator><creator>Tremblin, Pascal</creator><creator>Crouzet, Nicolas</creator><creator>Gao, Peter</creator><creator>Powell, Diana</creator><creator>Lagage, Pierre-Olivier</creator><creator>Dobbs-Dixon, Ian</creator><creator>Steinrueck, Maria E.</creator><creator>Kreidberg, Laura</creator><creator>Batalha, Natalie</creator><creator>Bean, Jacob L.</creator><creator>Stevenson, Kevin B.</creator><creator>Casewell, Sarah</creator><creator>Carone, Ludmila</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8342-1895</orcidid><orcidid>https://orcid.org/0000-0002-7030-9519</orcidid><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-0514-1147</orcidid><orcidid>https://orcid.org/0000-0003-2854-765X</orcidid><orcidid>https://orcid.org/0000-0002-0769-9614</orcidid><orcidid>https://orcid.org/0000-0002-4250-0957</orcidid><orcidid>https://orcid.org/0000-0001-6172-3403</orcidid><orcidid>https://orcid.org/0000-0001-9521-6258</orcidid><orcidid>https://orcid.org/0000-0002-7352-7941</orcidid><orcidid>https://orcid.org/0000-0002-1347-2600</orcidid><orcidid>https://orcid.org/0000-0002-4205-5267</orcidid><orcidid>https://orcid.org/0000-0001-7866-8738</orcidid><orcidid>https://orcid.org/0000-0002-8837-0035</orcidid><orcidid>https://orcid.org/0000-0002-8518-9601</orcidid><orcidid>https://orcid.org/0000-0003-2478-0120</orcidid><orcidid>https://orcid.org/0000-0003-4733-6532</orcidid><orcidid>https://orcid.org/0000-0001-9355-3752</orcidid></search><sort><creationdate>20200220</creationdate><title>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</title><author>Venot, Olivia ; Parmentier, Vivien ; Blecic, Jasmina ; Cubillos, Patricio E. ; Waldmann, Ingo P. ; Changeat, Quentin ; Moses, Julianne I. ; Tremblin, Pascal ; Crouzet, Nicolas ; Gao, Peter ; Powell, Diana ; Lagage, Pierre-Olivier ; Dobbs-Dixon, Ian ; Steinrueck, Maria E. ; Kreidberg, Laura ; Batalha, Natalie ; Bean, Jacob L. ; Stevenson, Kevin B. ; Casewell, Sarah ; Carone, Ludmila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-703639bf2c52035f98db624a8ecc4aeb0cdaa2b3c60cdd71e2dd9503739a34f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Chemical composition</topic><topic>Chemical kinetics</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Emission measurements</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanet atmospheric composition</topic><topic>Exoplanet structure</topic><topic>Extrasolar planets</topic><topic>Flight simulators</topic><topic>Gas giant planets</topic><topic>James Webb Space Telescope</topic><topic>Jupiter</topic><topic>Jupiter atmosphere</topic><topic>Microphysics</topic><topic>Planetary atmospheres</topic><topic>Planetary orbits</topic><topic>Radiative transfer</topic><topic>Reaction kinetics</topic><topic>Retrieval</topic><topic>Sciences of the Universe</topic><topic>Space telescopes</topic><topic>Temperature gradients</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venot, Olivia</creatorcontrib><creatorcontrib>Parmentier, Vivien</creatorcontrib><creatorcontrib>Blecic, Jasmina</creatorcontrib><creatorcontrib>Cubillos, Patricio E.</creatorcontrib><creatorcontrib>Waldmann, Ingo P.</creatorcontrib><creatorcontrib>Changeat, Quentin</creatorcontrib><creatorcontrib>Moses, Julianne I.</creatorcontrib><creatorcontrib>Tremblin, Pascal</creatorcontrib><creatorcontrib>Crouzet, Nicolas</creatorcontrib><creatorcontrib>Gao, Peter</creatorcontrib><creatorcontrib>Powell, Diana</creatorcontrib><creatorcontrib>Lagage, Pierre-Olivier</creatorcontrib><creatorcontrib>Dobbs-Dixon, Ian</creatorcontrib><creatorcontrib>Steinrueck, Maria E.</creatorcontrib><creatorcontrib>Kreidberg, Laura</creatorcontrib><creatorcontrib>Batalha, Natalie</creatorcontrib><creatorcontrib>Bean, Jacob L.</creatorcontrib><creatorcontrib>Stevenson, Kevin B.</creatorcontrib><creatorcontrib>Casewell, Sarah</creatorcontrib><creatorcontrib>Carone, Ludmila</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Venot, Olivia</au><au>Parmentier, Vivien</au><au>Blecic, Jasmina</au><au>Cubillos, Patricio E.</au><au>Waldmann, Ingo P.</au><au>Changeat, Quentin</au><au>Moses, Julianne I.</au><au>Tremblin, Pascal</au><au>Crouzet, Nicolas</au><au>Gao, Peter</au><au>Powell, Diana</au><au>Lagage, Pierre-Olivier</au><au>Dobbs-Dixon, Ian</au><au>Steinrueck, Maria E.</au><au>Kreidberg, Laura</au><au>Batalha, Natalie</au><au>Bean, Jacob L.</au><au>Stevenson, Kevin B.</au><au>Casewell, Sarah</au><au>Carone, Ludmila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-02-20</date><risdate>2020</risdate><volume>890</volume><issue>2</issue><spage>176</spage><pages>176-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5-12 m range with JWST/MIRI. To prepare for these observations, we performed extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the nightside emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, eventually providing the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab6a94</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8342-1895</orcidid><orcidid>https://orcid.org/0000-0002-7030-9519</orcidid><orcidid>https://orcid.org/0000-0001-6516-4493</orcidid><orcidid>https://orcid.org/0000-0003-0514-1147</orcidid><orcidid>https://orcid.org/0000-0003-2854-765X</orcidid><orcidid>https://orcid.org/0000-0002-0769-9614</orcidid><orcidid>https://orcid.org/0000-0002-4250-0957</orcidid><orcidid>https://orcid.org/0000-0001-6172-3403</orcidid><orcidid>https://orcid.org/0000-0001-9521-6258</orcidid><orcidid>https://orcid.org/0000-0002-7352-7941</orcidid><orcidid>https://orcid.org/0000-0002-1347-2600</orcidid><orcidid>https://orcid.org/0000-0002-4205-5267</orcidid><orcidid>https://orcid.org/0000-0001-7866-8738</orcidid><orcidid>https://orcid.org/0000-0002-8837-0035</orcidid><orcidid>https://orcid.org/0000-0002-8518-9601</orcidid><orcidid>https://orcid.org/0000-0003-2478-0120</orcidid><orcidid>https://orcid.org/0000-0003-4733-6532</orcidid><orcidid>https://orcid.org/0000-0001-9355-3752</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-02, Vol.890 (2), p.176 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ab6a94 |
source | IOP Publishing Free Content |
subjects | Astrophysics Atmosphere Atmospheric circulation Atmospheric models Chemical composition Chemical kinetics Cloud microphysics Clouds Computer simulation Emission measurements Exoplanet atmospheres Exoplanet atmospheric composition Exoplanet structure Extrasolar planets Flight simulators Gas giant planets James Webb Space Telescope Jupiter Jupiter atmosphere Microphysics Planetary atmospheres Planetary orbits Radiative transfer Reaction kinetics Retrieval Sciences of the Universe Space telescopes Temperature gradients Transit |
title | Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Chemistry%20and%20Thermal%20Structure%20Models%20for%20the%20Hot%20Jupiter%20WASP-43b%20and%20Predictions%20for%20JWST&rft.jtitle=The%20Astrophysical%20journal&rft.au=Venot,%20Olivia&rft.date=2020-02-20&rft.volume=890&rft.issue=2&rft.spage=176&rft.pages=176-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab6a94&rft_dat=%3Cproquest_O3W%3E2392588806%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392588806&rft_id=info:pmid/&rfr_iscdi=true |