Sensor Distortion Effects in Photon Monte Carlo Simulations

We present a detailed method to simulating sensor distortions using a photon and electron Monte Carlo method. We use three-dimensional electrostatic simulations to parameterize the perturbed electric field profile for nonideal sensor details. We follow the conversion of simulated photons, and the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-02, Vol.889 (2), p.182
Hauptverfasser: Peterson, J. R., O'Connor, P., Nomerotski, A., Magnier, E., Jernigan, J. G., Cheng, J., Cui, W., Peng, E., Rasmussen, A., Sembroski, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 182
container_title The Astrophysical journal
container_volume 889
creator Peterson, J. R.
O'Connor, P.
Nomerotski, A.
Magnier, E.
Jernigan, J. G.
Cheng, J.
Cui, W.
Peng, E.
Rasmussen, A.
Sembroski, G.
description We present a detailed method to simulating sensor distortions using a photon and electron Monte Carlo method. We use three-dimensional electrostatic simulations to parameterize the perturbed electric field profile for nonideal sensor details. We follow the conversion of simulated photons, and the subsequent response of the converted electrons to the electric field pattern. These nonideal sensor details can be implemented efficiently in a Monte Carlo approach. We demonstrate that the nonideal sensor distortions have a variety of observable consequence including the modification of the astrometric pattern; the distortion of the electron diffusion size and shape; and the distortion of flats. We show analytic validation of the diffusion physics, reproduce two kinds of edge distortion, and show qualitative validation of field-free regions, lithography errors, and fringing. We also demonstrate that there are two related effects of doping variation having different observable consequences. We show that field distortions from accumulated electrons lead to intensity-dependent point-spread functions and the sublinear variance in flats. The method is implemented in the Photon Simulator and the code is publicly available.
doi_str_mv 10.3847/1538-4357/ab64e0
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab64e0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apjab64e0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-f3373db41866f43bf6bbd52e069f4aecfaac5f1e3b48b1cb9247b202ff7d64d93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3j4vgzbX52myCJ2nrB1QUquAtJNmEprSbJUkP_nt3WfEknoYZnneYeQC4RPCWcFrPUEV4SUlVz5Rm1MIjMPkdHYMJhJCWjNSfp-Aspe3QYiEm4G5t2xRisfAph5h9aIulc9bkVPi2eNuE3E9eQpttMVdxF4q13x92agDTOThxapfsxU-dgo-H5fv8qVy9Pj7P71elIbXIpSOkJo2miDPmKNGOad1U2EImHFXWOKVM5ZAlmnKNjBaY1hpD7FzdMNoIMgVX496QspfJ-GzNxoS27c-UiJEKCtpDcIRMDClF62QX_V7FL4mgHAzJQYccdMjRUB-5GSM-dHIbDrHtv_gPv_4DV91Wci4klohj2TWOfAMxGXRx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sensor Distortion Effects in Photon Monte Carlo Simulations</title><source>IOP Publishing Free Content</source><creator>Peterson, J. R. ; O'Connor, P. ; Nomerotski, A. ; Magnier, E. ; Jernigan, J. G. ; Cheng, J. ; Cui, W. ; Peng, E. ; Rasmussen, A. ; Sembroski, G.</creator><creatorcontrib>Peterson, J. R. ; O'Connor, P. ; Nomerotski, A. ; Magnier, E. ; Jernigan, J. G. ; Cheng, J. ; Cui, W. ; Peng, E. ; Rasmussen, A. ; Sembroski, G. ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>We present a detailed method to simulating sensor distortions using a photon and electron Monte Carlo method. We use three-dimensional electrostatic simulations to parameterize the perturbed electric field profile for nonideal sensor details. We follow the conversion of simulated photons, and the subsequent response of the converted electrons to the electric field pattern. These nonideal sensor details can be implemented efficiently in a Monte Carlo approach. We demonstrate that the nonideal sensor distortions have a variety of observable consequence including the modification of the astrometric pattern; the distortion of the electron diffusion size and shape; and the distortion of flats. We show analytic validation of the diffusion physics, reproduce two kinds of edge distortion, and show qualitative validation of field-free regions, lithography errors, and fringing. We also demonstrate that there are two related effects of doping variation having different observable consequences. We show that field distortions from accumulated electrons lead to intensity-dependent point-spread functions and the sublinear variance in flats. The method is implemented in the Photon Simulator and the code is publicly available.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab64e0</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>Astronomical detectors ; Astronomical instrumentation ; Astronomical simulations ; Computational astronomy ; detectors ; instrumentation ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; telescopes</subject><ispartof>The Astrophysical journal, 2020-02, Vol.889 (2), p.182</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-f3373db41866f43bf6bbd52e069f4aecfaac5f1e3b48b1cb9247b202ff7d64d93</citedby><cites>FETCH-LOGICAL-c379t-f3373db41866f43bf6bbd52e069f4aecfaac5f1e3b48b1cb9247b202ff7d64d93</cites><orcidid>0000-0001-5471-9609 ; 0000-0002-7965-2815 ; 0000000279652815 ; 0000000154719609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab64e0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27911,27912,38877,53854</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab64e0$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1635094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, J. R.</creatorcontrib><creatorcontrib>O'Connor, P.</creatorcontrib><creatorcontrib>Nomerotski, A.</creatorcontrib><creatorcontrib>Magnier, E.</creatorcontrib><creatorcontrib>Jernigan, J. G.</creatorcontrib><creatorcontrib>Cheng, J.</creatorcontrib><creatorcontrib>Cui, W.</creatorcontrib><creatorcontrib>Peng, E.</creatorcontrib><creatorcontrib>Rasmussen, A.</creatorcontrib><creatorcontrib>Sembroski, G.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Sensor Distortion Effects in Photon Monte Carlo Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a detailed method to simulating sensor distortions using a photon and electron Monte Carlo method. We use three-dimensional electrostatic simulations to parameterize the perturbed electric field profile for nonideal sensor details. We follow the conversion of simulated photons, and the subsequent response of the converted electrons to the electric field pattern. These nonideal sensor details can be implemented efficiently in a Monte Carlo approach. We demonstrate that the nonideal sensor distortions have a variety of observable consequence including the modification of the astrometric pattern; the distortion of the electron diffusion size and shape; and the distortion of flats. We show analytic validation of the diffusion physics, reproduce two kinds of edge distortion, and show qualitative validation of field-free regions, lithography errors, and fringing. We also demonstrate that there are two related effects of doping variation having different observable consequences. We show that field distortions from accumulated electrons lead to intensity-dependent point-spread functions and the sublinear variance in flats. The method is implemented in the Photon Simulator and the code is publicly available.</description><subject>Astronomical detectors</subject><subject>Astronomical instrumentation</subject><subject>Astronomical simulations</subject><subject>Computational astronomy</subject><subject>detectors</subject><subject>instrumentation</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>telescopes</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3j4vgzbX52myCJ2nrB1QUquAtJNmEprSbJUkP_nt3WfEknoYZnneYeQC4RPCWcFrPUEV4SUlVz5Rm1MIjMPkdHYMJhJCWjNSfp-Aspe3QYiEm4G5t2xRisfAph5h9aIulc9bkVPi2eNuE3E9eQpttMVdxF4q13x92agDTOThxapfsxU-dgo-H5fv8qVy9Pj7P71elIbXIpSOkJo2miDPmKNGOad1U2EImHFXWOKVM5ZAlmnKNjBaY1hpD7FzdMNoIMgVX496QspfJ-GzNxoS27c-UiJEKCtpDcIRMDClF62QX_V7FL4mgHAzJQYccdMjRUB-5GSM-dHIbDrHtv_gPv_4DV91Wci4klohj2TWOfAMxGXRx</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Peterson, J. R.</creator><creator>O'Connor, P.</creator><creator>Nomerotski, A.</creator><creator>Magnier, E.</creator><creator>Jernigan, J. G.</creator><creator>Cheng, J.</creator><creator>Cui, W.</creator><creator>Peng, E.</creator><creator>Rasmussen, A.</creator><creator>Sembroski, G.</creator><general>The American Astronomical Society</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5471-9609</orcidid><orcidid>https://orcid.org/0000-0002-7965-2815</orcidid><orcidid>https://orcid.org/0000000279652815</orcidid><orcidid>https://orcid.org/0000000154719609</orcidid></search><sort><creationdate>20200201</creationdate><title>Sensor Distortion Effects in Photon Monte Carlo Simulations</title><author>Peterson, J. R. ; O'Connor, P. ; Nomerotski, A. ; Magnier, E. ; Jernigan, J. G. ; Cheng, J. ; Cui, W. ; Peng, E. ; Rasmussen, A. ; Sembroski, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-f3373db41866f43bf6bbd52e069f4aecfaac5f1e3b48b1cb9247b202ff7d64d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical detectors</topic><topic>Astronomical instrumentation</topic><topic>Astronomical simulations</topic><topic>Computational astronomy</topic><topic>detectors</topic><topic>instrumentation</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, J. R.</creatorcontrib><creatorcontrib>O'Connor, P.</creatorcontrib><creatorcontrib>Nomerotski, A.</creatorcontrib><creatorcontrib>Magnier, E.</creatorcontrib><creatorcontrib>Jernigan, J. G.</creatorcontrib><creatorcontrib>Cheng, J.</creatorcontrib><creatorcontrib>Cui, W.</creatorcontrib><creatorcontrib>Peng, E.</creatorcontrib><creatorcontrib>Rasmussen, A.</creatorcontrib><creatorcontrib>Sembroski, G.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peterson, J. R.</au><au>O'Connor, P.</au><au>Nomerotski, A.</au><au>Magnier, E.</au><au>Jernigan, J. G.</au><au>Cheng, J.</au><au>Cui, W.</au><au>Peng, E.</au><au>Rasmussen, A.</au><au>Sembroski, G.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor Distortion Effects in Photon Monte Carlo Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>889</volume><issue>2</issue><spage>182</spage><pages>182-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We present a detailed method to simulating sensor distortions using a photon and electron Monte Carlo method. We use three-dimensional electrostatic simulations to parameterize the perturbed electric field profile for nonideal sensor details. We follow the conversion of simulated photons, and the subsequent response of the converted electrons to the electric field pattern. These nonideal sensor details can be implemented efficiently in a Monte Carlo approach. We demonstrate that the nonideal sensor distortions have a variety of observable consequence including the modification of the astrometric pattern; the distortion of the electron diffusion size and shape; and the distortion of flats. We show analytic validation of the diffusion physics, reproduce two kinds of edge distortion, and show qualitative validation of field-free regions, lithography errors, and fringing. We also demonstrate that there are two related effects of doping variation having different observable consequences. We show that field distortions from accumulated electrons lead to intensity-dependent point-spread functions and the sublinear variance in flats. The method is implemented in the Photon Simulator and the code is publicly available.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab64e0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5471-9609</orcidid><orcidid>https://orcid.org/0000-0002-7965-2815</orcidid><orcidid>https://orcid.org/0000000279652815</orcidid><orcidid>https://orcid.org/0000000154719609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-02, Vol.889 (2), p.182
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ab64e0
source IOP Publishing Free Content
subjects Astronomical detectors
Astronomical instrumentation
Astronomical simulations
Computational astronomy
detectors
instrumentation
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
telescopes
title Sensor Distortion Effects in Photon Monte Carlo Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor%20Distortion%20Effects%20in%20Photon%20Monte%20Carlo%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Peterson,%20J.%20R.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-02-01&rft.volume=889&rft.issue=2&rft.spage=182&rft.pages=182-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab64e0&rft_dat=%3Ciop_O3W%3Eapjab64e0%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true