A Variant Stellar-to-nebular Dust Attenuation Ratio on Subgalactic and Galactic Scales

The state-of-the-art geometry models of stars/dust suggest that dust attenuation toward nebular regions ( ) is always larger than that of stellar regions ( ). Utilizing the newly released integral field spectroscopic data from the Mapping Nearby Galaxies at Apache Point Observatory survey, we invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-01, Vol.888 (2), p.88
Hauptverfasser: Lin, Zesen, Kong, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 88
container_title The Astrophysical journal
container_volume 888
creator Lin, Zesen
Kong, Xu
description The state-of-the-art geometry models of stars/dust suggest that dust attenuation toward nebular regions ( ) is always larger than that of stellar regions ( ). Utilizing the newly released integral field spectroscopic data from the Mapping Nearby Galaxies at Apache Point Observatory survey, we investigate whether and how the ratio varies from subgalactic to galactic scales. On a subgalactic scale, we report a stronger correlation between and for more active H ii regions. The local is found to have moderate nonlinear correlations with three tracers of diffuse ionized gas (DIG), as well as indicators of gas-phase metallicity and ionization. The DIG regions tend to have larger compared to classic H ii regions excited by young OB stars. Metal-poor regions with a higher ionized level suffer much less nebular attenuation and thus have larger ratios. A low- and high- sequence, which can be resolved into DIG-dominated and metal-poor regions, on the three BPT diagrams is found. Based on these observations, we suggest that besides the geometry of stars/dust, local physical conditions such as metallicity and ionized level also play an important role in determining the . On a galactic scale, the global ratio has strong correlations with stellar mass (M*), moderate correlations with star formation rate (SFR) and metallicity, and weak correlations with inclination and specific SFR. Galaxies with larger M* and higher SFR that are more metal-rich tend to have smaller ratios. Such correlations form a decreasing trend of along the star-forming main sequence and mass-metallicity relation. The dust growth process accompanied by galaxy growth might be one plausible explanation for our observations.
doi_str_mv 10.3847/1538-4357/ab5f0e
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab5f0e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357579670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-8b0d50b2bd68d34910ac905dfc78f45a1d64e85126fbd3d9815b25b6c56e5efd3</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLgunr3GPBq3KRp0vS4rO4qLAhWF28hn9KltmuSHvz3ttSPk6eZ95iZxxsALgm-oSIvFoRRgXLKioXSzGN3BGa_q2MwwxjniNPi9RScxbgfx6wsZ2C3hDsVatUmWCXXNCqg1KHW6X6g8LaPCS5Tcm2vUt218GkEOJCq12-qUSbVBqrWws3PUBnVuHgOTrxqorv4xjl4Wd89r-7R9nHzsFpukaEMJyQ0tgzrTFsuLM1LgpUpMbPeFMLnTBHLcycYybjXltpSEKYzprlh3DHnLZ2Dqyn3ELqP3sUk910f2uGkzIbHWVHyAg8qPKlM6GIMzstDqN9V-JQEy7E9OVYlx6rk1N5guZ4sdXf4y_xX_gUOw3EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357579670</pqid></control><display><type>article</type><title>A Variant Stellar-to-nebular Dust Attenuation Ratio on Subgalactic and Galactic Scales</title><source>IOP Publishing Free Content</source><creator>Lin, Zesen ; Kong, Xu</creator><creatorcontrib>Lin, Zesen ; Kong, Xu</creatorcontrib><description>The state-of-the-art geometry models of stars/dust suggest that dust attenuation toward nebular regions ( ) is always larger than that of stellar regions ( ). Utilizing the newly released integral field spectroscopic data from the Mapping Nearby Galaxies at Apache Point Observatory survey, we investigate whether and how the ratio varies from subgalactic to galactic scales. On a subgalactic scale, we report a stronger correlation between and for more active H ii regions. The local is found to have moderate nonlinear correlations with three tracers of diffuse ionized gas (DIG), as well as indicators of gas-phase metallicity and ionization. The DIG regions tend to have larger compared to classic H ii regions excited by young OB stars. Metal-poor regions with a higher ionized level suffer much less nebular attenuation and thus have larger ratios. A low- and high- sequence, which can be resolved into DIG-dominated and metal-poor regions, on the three BPT diagrams is found. Based on these observations, we suggest that besides the geometry of stars/dust, local physical conditions such as metallicity and ionized level also play an important role in determining the . On a galactic scale, the global ratio has strong correlations with stellar mass (M*), moderate correlations with star formation rate (SFR) and metallicity, and weak correlations with inclination and specific SFR. Galaxies with larger M* and higher SFR that are more metal-rich tend to have smaller ratios. Such correlations form a decreasing trend of along the star-forming main sequence and mass-metallicity relation. The dust growth process accompanied by galaxy growth might be one plausible explanation for our observations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab5f0e</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astrophysics ; Attenuation ; Correlation ; Cosmic dust ; Dust ; Galaxies ; Galaxy evolution ; H II regions ; Inclination ; Interstellar dust extinction ; Interstellar medium ; Ionization ; Mapping ; Massive stars ; Metallicity ; Star &amp; galaxy formation ; Star formation ; Star formation rate ; Stars ; Stars &amp; galaxies ; Stellar mass ; Tracers ; Warm ionized medium</subject><ispartof>The Astrophysical journal, 2020-01, Vol.888 (2), p.88</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-8b0d50b2bd68d34910ac905dfc78f45a1d64e85126fbd3d9815b25b6c56e5efd3</citedby><cites>FETCH-LOGICAL-c350t-8b0d50b2bd68d34910ac905dfc78f45a1d64e85126fbd3d9815b25b6c56e5efd3</cites><orcidid>0000-0001-8078-3428 ; 0000-0002-7660-2273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5f0e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5f0e$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lin, Zesen</creatorcontrib><creatorcontrib>Kong, Xu</creatorcontrib><title>A Variant Stellar-to-nebular Dust Attenuation Ratio on Subgalactic and Galactic Scales</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The state-of-the-art geometry models of stars/dust suggest that dust attenuation toward nebular regions ( ) is always larger than that of stellar regions ( ). Utilizing the newly released integral field spectroscopic data from the Mapping Nearby Galaxies at Apache Point Observatory survey, we investigate whether and how the ratio varies from subgalactic to galactic scales. On a subgalactic scale, we report a stronger correlation between and for more active H ii regions. The local is found to have moderate nonlinear correlations with three tracers of diffuse ionized gas (DIG), as well as indicators of gas-phase metallicity and ionization. The DIG regions tend to have larger compared to classic H ii regions excited by young OB stars. Metal-poor regions with a higher ionized level suffer much less nebular attenuation and thus have larger ratios. A low- and high- sequence, which can be resolved into DIG-dominated and metal-poor regions, on the three BPT diagrams is found. Based on these observations, we suggest that besides the geometry of stars/dust, local physical conditions such as metallicity and ionized level also play an important role in determining the . On a galactic scale, the global ratio has strong correlations with stellar mass (M*), moderate correlations with star formation rate (SFR) and metallicity, and weak correlations with inclination and specific SFR. Galaxies with larger M* and higher SFR that are more metal-rich tend to have smaller ratios. Such correlations form a decreasing trend of along the star-forming main sequence and mass-metallicity relation. The dust growth process accompanied by galaxy growth might be one plausible explanation for our observations.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Attenuation</subject><subject>Correlation</subject><subject>Cosmic dust</subject><subject>Dust</subject><subject>Galaxies</subject><subject>Galaxy evolution</subject><subject>H II regions</subject><subject>Inclination</subject><subject>Interstellar dust extinction</subject><subject>Interstellar medium</subject><subject>Ionization</subject><subject>Mapping</subject><subject>Massive stars</subject><subject>Metallicity</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Star formation rate</subject><subject>Stars</subject><subject>Stars &amp; galaxies</subject><subject>Stellar mass</subject><subject>Tracers</subject><subject>Warm ionized medium</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKLgunr3GPBq3KRp0vS4rO4qLAhWF28hn9KltmuSHvz3ttSPk6eZ95iZxxsALgm-oSIvFoRRgXLKioXSzGN3BGa_q2MwwxjniNPi9RScxbgfx6wsZ2C3hDsVatUmWCXXNCqg1KHW6X6g8LaPCS5Tcm2vUt218GkEOJCq12-qUSbVBqrWws3PUBnVuHgOTrxqorv4xjl4Wd89r-7R9nHzsFpukaEMJyQ0tgzrTFsuLM1LgpUpMbPeFMLnTBHLcycYybjXltpSEKYzprlh3DHnLZ2Dqyn3ELqP3sUk910f2uGkzIbHWVHyAg8qPKlM6GIMzstDqN9V-JQEy7E9OVYlx6rk1N5guZ4sdXf4y_xX_gUOw3EA</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Lin, Zesen</creator><creator>Kong, Xu</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8078-3428</orcidid><orcidid>https://orcid.org/0000-0002-7660-2273</orcidid></search><sort><creationdate>20200110</creationdate><title>A Variant Stellar-to-nebular Dust Attenuation Ratio on Subgalactic and Galactic Scales</title><author>Lin, Zesen ; Kong, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-8b0d50b2bd68d34910ac905dfc78f45a1d64e85126fbd3d9815b25b6c56e5efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Attenuation</topic><topic>Correlation</topic><topic>Cosmic dust</topic><topic>Dust</topic><topic>Galaxies</topic><topic>Galaxy evolution</topic><topic>H II regions</topic><topic>Inclination</topic><topic>Interstellar dust extinction</topic><topic>Interstellar medium</topic><topic>Ionization</topic><topic>Mapping</topic><topic>Massive stars</topic><topic>Metallicity</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Star formation rate</topic><topic>Stars</topic><topic>Stars &amp; galaxies</topic><topic>Stellar mass</topic><topic>Tracers</topic><topic>Warm ionized medium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zesen</creatorcontrib><creatorcontrib>Kong, Xu</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Zesen</au><au>Kong, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variant Stellar-to-nebular Dust Attenuation Ratio on Subgalactic and Galactic Scales</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-01-10</date><risdate>2020</risdate><volume>888</volume><issue>2</issue><spage>88</spage><pages>88-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The state-of-the-art geometry models of stars/dust suggest that dust attenuation toward nebular regions ( ) is always larger than that of stellar regions ( ). Utilizing the newly released integral field spectroscopic data from the Mapping Nearby Galaxies at Apache Point Observatory survey, we investigate whether and how the ratio varies from subgalactic to galactic scales. On a subgalactic scale, we report a stronger correlation between and for more active H ii regions. The local is found to have moderate nonlinear correlations with three tracers of diffuse ionized gas (DIG), as well as indicators of gas-phase metallicity and ionization. The DIG regions tend to have larger compared to classic H ii regions excited by young OB stars. Metal-poor regions with a higher ionized level suffer much less nebular attenuation and thus have larger ratios. A low- and high- sequence, which can be resolved into DIG-dominated and metal-poor regions, on the three BPT diagrams is found. Based on these observations, we suggest that besides the geometry of stars/dust, local physical conditions such as metallicity and ionized level also play an important role in determining the . On a galactic scale, the global ratio has strong correlations with stellar mass (M*), moderate correlations with star formation rate (SFR) and metallicity, and weak correlations with inclination and specific SFR. Galaxies with larger M* and higher SFR that are more metal-rich tend to have smaller ratios. Such correlations form a decreasing trend of along the star-forming main sequence and mass-metallicity relation. The dust growth process accompanied by galaxy growth might be one plausible explanation for our observations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab5f0e</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8078-3428</orcidid><orcidid>https://orcid.org/0000-0002-7660-2273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-01, Vol.888 (2), p.88
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ab5f0e
source IOP Publishing Free Content
subjects Astronomical models
Astrophysics
Attenuation
Correlation
Cosmic dust
Dust
Galaxies
Galaxy evolution
H II regions
Inclination
Interstellar dust extinction
Interstellar medium
Ionization
Mapping
Massive stars
Metallicity
Star & galaxy formation
Star formation
Star formation rate
Stars
Stars & galaxies
Stellar mass
Tracers
Warm ionized medium
title A Variant Stellar-to-nebular Dust Attenuation Ratio on Subgalactic and Galactic Scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variant%20Stellar-to-nebular%20Dust%20Attenuation%20Ratio%20on%20Subgalactic%20and%20Galactic%20Scales&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lin,%20Zesen&rft.date=2020-01-10&rft.volume=888&rft.issue=2&rft.spage=88&rft.pages=88-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab5f0e&rft_dat=%3Cproquest_O3W%3E2357579670%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357579670&rft_id=info:pmid/&rfr_iscdi=true