Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris

Most aspects of stellar evolution proceed far too slowly to be directly observable in a single star on human timescales. The thermally pulsing asymptotic giant branch (AGB) is one exception. The combination of state-of-the-art modeling techniques with data assimilated from observations collected by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-07, Vol.879 (1)
Hauptverfasser: Molnár, László, Joyce, Meridith, Kiss, László L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Astrophysical journal
container_volume 879
creator Molnár, László
Joyce, Meridith
Kiss, László L.
description Most aspects of stellar evolution proceed far too slowly to be directly observable in a single star on human timescales. The thermally pulsing asymptotic giant branch (AGB) is one exception. The combination of state-of-the-art modeling techniques with data assimilated from observations collected by amateur astronomers over many decades provide, for the first time, the opportunity to identify a star occupying this precise evolutionary stage. In this study, we show that the rapid pulsation period change and the associated reduction in radius in the bright, northern variable star T Ursae Minoris are caused by the recent onset of a thermal pulse (TP). We demonstrate that T UMi transitioned into a double-mode pulsation state, and we exploit its asteroseismic features to constrain its fundamental stellar parameters. We use evolutionary models from MESA and linear pulsation models from GYRE to track simultaneously the structural and oscillatory evolution of models with varying mass, and we apply a sophisticated iterative sampling scheme to achieve time resolution ≤10 yr at the onset of the relevant TPs. We report an initial mass of 2.0 0.15 M and an age of 1.17 0.21 Gyr for T UMi. This is the most precise mass and age determination for a single AGB star ever obtained. The ultimate test of our models will be the continued observation of its evolution in real time: we predict that the pulsation periods in T UMi will continue shortening for a few decades before they rebound and begin to lengthen again, as the star expands in radius.
doi_str_mv 10.3847/1538-4357/ab22a5
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab22a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365874913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-299b533753df809ba926c8c85682cb8ee97955434c58372f450accf654a8ab123</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoOKd3jwE9Wm3zo0m8yZw_YGOiHXgLaZayjK6pSTr_fVsnevEUXt7nfd_jA8B5ll5jTthNRjFPCKbsRpUIKXoARr9fh2CUpilJcszej8FJCJuhREKMQHiLpq6Vh9Odq7toXQNtA1-NqmFht-YWzt3K1AFOXBNsiKaJ8NPGNYxrA--tNzrCRRmM36nvWVdBBYu18ds-4KWrgxniCrj0QRk4t43zNpyCo0r1rbOfdwyWD9Ni8pTMFo_Pk7tZopHIY9LfV1KMGcWriqeiVALlmmtOc450yY0RTFBKMNGUY4YqQlOldZVTorgqM4TH4GKf23r30ZkQ5cZ1vulXSoRzyhkRGe6pqz1lXfsHZKkctMrBoRwcyr3WHr_8B1ftRnImZCZzJNtVhb8AjPt3AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365874913</pqid></control><display><type>article</type><title>Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris</title><source>IOP Publishing Free Content</source><creator>Molnár, László ; Joyce, Meridith ; Kiss, László L.</creator><creatorcontrib>Molnár, László ; Joyce, Meridith ; Kiss, László L.</creatorcontrib><description>Most aspects of stellar evolution proceed far too slowly to be directly observable in a single star on human timescales. The thermally pulsing asymptotic giant branch (AGB) is one exception. The combination of state-of-the-art modeling techniques with data assimilated from observations collected by amateur astronomers over many decades provide, for the first time, the opportunity to identify a star occupying this precise evolutionary stage. In this study, we show that the rapid pulsation period change and the associated reduction in radius in the bright, northern variable star T Ursae Minoris are caused by the recent onset of a thermal pulse (TP). We demonstrate that T UMi transitioned into a double-mode pulsation state, and we exploit its asteroseismic features to constrain its fundamental stellar parameters. We use evolutionary models from MESA and linear pulsation models from GYRE to track simultaneously the structural and oscillatory evolution of models with varying mass, and we apply a sophisticated iterative sampling scheme to achieve time resolution ≤10 yr at the onset of the relevant TPs. We report an initial mass of 2.0 0.15 M and an age of 1.17 0.21 Gyr for T UMi. This is the most precise mass and age determination for a single AGB star ever obtained. The ultimate test of our models will be the continued observation of its evolution in real time: we predict that the pulsation periods in T UMi will continue shortening for a few decades before they rebound and begin to lengthen again, as the star expands in radius.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab22a5</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>asteroseismology ; Astronomical models ; Astrophysics ; Asymptotic giant branch stars ; Celestial bodies ; Chronology ; Iterative methods ; late stellar evolution ; pulsating variable stars ; Pulsation ; Real time ; Stellar age ; Stellar evolution ; Variable stars</subject><ispartof>The Astrophysical journal, 2019-07, Vol.879 (1)</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 01, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-299b533753df809ba926c8c85682cb8ee97955434c58372f450accf654a8ab123</citedby><orcidid>0000-0002-8159-1599 ; 0000-0002-8717-127X ; 0000-0002-3234-1374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab22a5/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab22a5$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Molnár, László</creatorcontrib><creatorcontrib>Joyce, Meridith</creatorcontrib><creatorcontrib>Kiss, László L.</creatorcontrib><title>Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Most aspects of stellar evolution proceed far too slowly to be directly observable in a single star on human timescales. The thermally pulsing asymptotic giant branch (AGB) is one exception. The combination of state-of-the-art modeling techniques with data assimilated from observations collected by amateur astronomers over many decades provide, for the first time, the opportunity to identify a star occupying this precise evolutionary stage. In this study, we show that the rapid pulsation period change and the associated reduction in radius in the bright, northern variable star T Ursae Minoris are caused by the recent onset of a thermal pulse (TP). We demonstrate that T UMi transitioned into a double-mode pulsation state, and we exploit its asteroseismic features to constrain its fundamental stellar parameters. We use evolutionary models from MESA and linear pulsation models from GYRE to track simultaneously the structural and oscillatory evolution of models with varying mass, and we apply a sophisticated iterative sampling scheme to achieve time resolution ≤10 yr at the onset of the relevant TPs. We report an initial mass of 2.0 0.15 M and an age of 1.17 0.21 Gyr for T UMi. This is the most precise mass and age determination for a single AGB star ever obtained. The ultimate test of our models will be the continued observation of its evolution in real time: we predict that the pulsation periods in T UMi will continue shortening for a few decades before they rebound and begin to lengthen again, as the star expands in radius.</description><subject>asteroseismology</subject><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Asymptotic giant branch stars</subject><subject>Celestial bodies</subject><subject>Chronology</subject><subject>Iterative methods</subject><subject>late stellar evolution</subject><subject>pulsating variable stars</subject><subject>Pulsation</subject><subject>Real time</subject><subject>Stellar age</subject><subject>Stellar evolution</subject><subject>Variable stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkM9LwzAUx4MoOKd3jwE9Wm3zo0m8yZw_YGOiHXgLaZayjK6pSTr_fVsnevEUXt7nfd_jA8B5ll5jTthNRjFPCKbsRpUIKXoARr9fh2CUpilJcszej8FJCJuhREKMQHiLpq6Vh9Odq7toXQNtA1-NqmFht-YWzt3K1AFOXBNsiKaJ8NPGNYxrA--tNzrCRRmM36nvWVdBBYu18ds-4KWrgxniCrj0QRk4t43zNpyCo0r1rbOfdwyWD9Ni8pTMFo_Pk7tZopHIY9LfV1KMGcWriqeiVALlmmtOc450yY0RTFBKMNGUY4YqQlOldZVTorgqM4TH4GKf23r30ZkQ5cZ1vulXSoRzyhkRGe6pqz1lXfsHZKkctMrBoRwcyr3WHr_8B1ftRnImZCZzJNtVhb8AjPt3AA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Molnár, László</creator><creator>Joyce, Meridith</creator><creator>Kiss, László L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8159-1599</orcidid><orcidid>https://orcid.org/0000-0002-8717-127X</orcidid><orcidid>https://orcid.org/0000-0002-3234-1374</orcidid></search><sort><creationdate>20190701</creationdate><title>Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris</title><author>Molnár, László ; Joyce, Meridith ; Kiss, László L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-299b533753df809ba926c8c85682cb8ee97955434c58372f450accf654a8ab123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>asteroseismology</topic><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Asymptotic giant branch stars</topic><topic>Celestial bodies</topic><topic>Chronology</topic><topic>Iterative methods</topic><topic>late stellar evolution</topic><topic>pulsating variable stars</topic><topic>Pulsation</topic><topic>Real time</topic><topic>Stellar age</topic><topic>Stellar evolution</topic><topic>Variable stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molnár, László</creatorcontrib><creatorcontrib>Joyce, Meridith</creatorcontrib><creatorcontrib>Kiss, László L.</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molnár, László</au><au>Joyce, Meridith</au><au>Kiss, László L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>879</volume><issue>1</issue><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Most aspects of stellar evolution proceed far too slowly to be directly observable in a single star on human timescales. The thermally pulsing asymptotic giant branch (AGB) is one exception. The combination of state-of-the-art modeling techniques with data assimilated from observations collected by amateur astronomers over many decades provide, for the first time, the opportunity to identify a star occupying this precise evolutionary stage. In this study, we show that the rapid pulsation period change and the associated reduction in radius in the bright, northern variable star T Ursae Minoris are caused by the recent onset of a thermal pulse (TP). We demonstrate that T UMi transitioned into a double-mode pulsation state, and we exploit its asteroseismic features to constrain its fundamental stellar parameters. We use evolutionary models from MESA and linear pulsation models from GYRE to track simultaneously the structural and oscillatory evolution of models with varying mass, and we apply a sophisticated iterative sampling scheme to achieve time resolution ≤10 yr at the onset of the relevant TPs. We report an initial mass of 2.0 0.15 M and an age of 1.17 0.21 Gyr for T UMi. This is the most precise mass and age determination for a single AGB star ever obtained. The ultimate test of our models will be the continued observation of its evolution in real time: we predict that the pulsation periods in T UMi will continue shortening for a few decades before they rebound and begin to lengthen again, as the star expands in radius.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab22a5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8159-1599</orcidid><orcidid>https://orcid.org/0000-0002-8717-127X</orcidid><orcidid>https://orcid.org/0000-0002-3234-1374</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-07, Vol.879 (1)
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ab22a5
source IOP Publishing Free Content
subjects asteroseismology
Astronomical models
Astrophysics
Asymptotic giant branch stars
Celestial bodies
Chronology
Iterative methods
late stellar evolution
pulsating variable stars
Pulsation
Real time
Stellar age
Stellar evolution
Variable stars
title Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stellar%20Evolution%20in%20Real%20Time:%20Models%20Consistent%20with%20the%20Direct%20Observation%20of%20a%20Thermal%20Pulse%20in%20T%20Ursae%20Minoris&rft.jtitle=The%20Astrophysical%20journal&rft.au=Moln%C3%A1r,%20L%C3%A1szl%C3%B3&rft.date=2019-07-01&rft.volume=879&rft.issue=1&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab22a5&rft_dat=%3Cproquest_O3W%3E2365874913%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365874913&rft_id=info:pmid/&rfr_iscdi=true