Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations

We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-03, Vol.873 (1), p.71
Hauptverfasser: Kinch, Brooks E., Schnittman, Jeremy D., Kallman, Timothy R., Krolik, Julian H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 71
container_title The Astrophysical journal
container_volume 873
creator Kinch, Brooks E.
Schnittman, Jeremy D.
Kallman, Timothy R.
Krolik, Julian H.
description We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.
doi_str_mv 10.3847/1538-4357/ab05d5
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab05d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365901034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwMzBYgpHQS-w48QgV0EpIIApSN-viOJCSxMFOh_57EgXBAtPp7r13T_oIOQ3hiqU8mYUxSwPO4mSGGcR5vEcmP6d9MgEAHgiWrA_JkfebYY2knJDlkzN5qbuyeaPdu6Hr4Bl3dNUa3TmktqCrzlQVuqBG7-lNhfqDLmxlPC2cremqrLcVdqVt_DE5KLDy5uR7Tsnr3e3LfBE8PN4v59cPgWZx2gUmLSAXuYhCyVmGTDAUKDWIRHOIUErggCaLY14IwFwDYp6ZPsFTjhAlbErOx7-ts59b4zu1sVvX9JUqYiKWEALjvQtGl3bWe2cK1bqyRrdTIagBmBroqIGOGoH1kbMx0qBH1XSufwih7FFFQg7yxSiXtv2txHaj0oSpUCWhavOit13-Yfu39AsxtoBR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365901034</pqid></control><display><type>article</type><title>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</title><source>IOP Publishing Free Content</source><creator>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Kallman, Timothy R. ; Krolik, Julian H.</creator><creatorcontrib>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Kallman, Timothy R. ; Krolik, Julian H.</creatorcontrib><description>We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab05d5</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Abundance ; accretion, accretion disks ; Astrophysics ; black hole physics ; Black holes ; Computational fluid dynamics ; Computer simulation ; Cooling rate ; Corona ; Density ; Deposition ; Emission ; Emission lines ; Energy conservation ; Flow geometry ; Fluid flow ; High energy astronomy ; Inclination ; Iterative methods ; line: formation ; Magnetohydrodynamics ; Photoionization ; Power law ; Radiation ; Radiation transport ; radiative transfer ; Reprocessing ; Simulation ; Subroutines ; X ray spectra ; X-rays: binaries</subject><ispartof>The Astrophysical journal, 2019-03, Vol.873 (1), p.71</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 01, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</citedby><cites>FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</cites><orcidid>0000-0002-2995-7717 ; 0000-0002-5779-6906 ; 0000-0002-8676-425X ; 0000-0002-2942-8399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab05d5/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab05d5$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Kinch, Brooks E.</creatorcontrib><creatorcontrib>Schnittman, Jeremy D.</creatorcontrib><creatorcontrib>Kallman, Timothy R.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><title>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.</description><subject>Abundance</subject><subject>accretion, accretion disks</subject><subject>Astrophysics</subject><subject>black hole physics</subject><subject>Black holes</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cooling rate</subject><subject>Corona</subject><subject>Density</subject><subject>Deposition</subject><subject>Emission</subject><subject>Emission lines</subject><subject>Energy conservation</subject><subject>Flow geometry</subject><subject>Fluid flow</subject><subject>High energy astronomy</subject><subject>Inclination</subject><subject>Iterative methods</subject><subject>line: formation</subject><subject>Magnetohydrodynamics</subject><subject>Photoionization</subject><subject>Power law</subject><subject>Radiation</subject><subject>Radiation transport</subject><subject>radiative transfer</subject><subject>Reprocessing</subject><subject>Simulation</subject><subject>Subroutines</subject><subject>X ray spectra</subject><subject>X-rays: binaries</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp1kDFPwzAQhS0EEqWwMzBYgpHQS-w48QgV0EpIIApSN-viOJCSxMFOh_57EgXBAtPp7r13T_oIOQ3hiqU8mYUxSwPO4mSGGcR5vEcmP6d9MgEAHgiWrA_JkfebYY2knJDlkzN5qbuyeaPdu6Hr4Bl3dNUa3TmktqCrzlQVuqBG7-lNhfqDLmxlPC2cremqrLcVdqVt_DE5KLDy5uR7Tsnr3e3LfBE8PN4v59cPgWZx2gUmLSAXuYhCyVmGTDAUKDWIRHOIUErggCaLY14IwFwDYp6ZPsFTjhAlbErOx7-ts59b4zu1sVvX9JUqYiKWEALjvQtGl3bWe2cK1bqyRrdTIagBmBroqIGOGoH1kbMx0qBH1XSufwih7FFFQg7yxSiXtv2txHaj0oSpUCWhavOit13-Yfu39AsxtoBR</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Kinch, Brooks E.</creator><creator>Schnittman, Jeremy D.</creator><creator>Kallman, Timothy R.</creator><creator>Krolik, Julian H.</creator><general>The American Astronomical Society</general><general>American Astronomical Society</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><orcidid>https://orcid.org/0000-0002-5779-6906</orcidid><orcidid>https://orcid.org/0000-0002-8676-425X</orcidid><orcidid>https://orcid.org/0000-0002-2942-8399</orcidid></search><sort><creationdate>20190301</creationdate><title>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</title><author>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Kallman, Timothy R. ; Krolik, Julian H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>accretion, accretion disks</topic><topic>Astrophysics</topic><topic>black hole physics</topic><topic>Black holes</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cooling rate</topic><topic>Corona</topic><topic>Density</topic><topic>Deposition</topic><topic>Emission</topic><topic>Emission lines</topic><topic>Energy conservation</topic><topic>Flow geometry</topic><topic>Fluid flow</topic><topic>High energy astronomy</topic><topic>Inclination</topic><topic>Iterative methods</topic><topic>line: formation</topic><topic>Magnetohydrodynamics</topic><topic>Photoionization</topic><topic>Power law</topic><topic>Radiation</topic><topic>Radiation transport</topic><topic>radiative transfer</topic><topic>Reprocessing</topic><topic>Simulation</topic><topic>Subroutines</topic><topic>X ray spectra</topic><topic>X-rays: binaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinch, Brooks E.</creatorcontrib><creatorcontrib>Schnittman, Jeremy D.</creatorcontrib><creatorcontrib>Kallman, Timothy R.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kinch, Brooks E.</au><au>Schnittman, Jeremy D.</au><au>Kallman, Timothy R.</au><au>Krolik, Julian H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>873</volume><issue>1</issue><spage>71</spage><pages>71-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab05d5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><orcidid>https://orcid.org/0000-0002-5779-6906</orcidid><orcidid>https://orcid.org/0000-0002-8676-425X</orcidid><orcidid>https://orcid.org/0000-0002-2942-8399</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-03, Vol.873 (1), p.71
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ab05d5
source IOP Publishing Free Content
subjects Abundance
accretion, accretion disks
Astrophysics
black hole physics
Black holes
Computational fluid dynamics
Computer simulation
Cooling rate
Corona
Density
Deposition
Emission
Emission lines
Energy conservation
Flow geometry
Fluid flow
High energy astronomy
Inclination
Iterative methods
line: formation
Magnetohydrodynamics
Photoionization
Power law
Radiation
Radiation transport
radiative transfer
Reprocessing
Simulation
Subroutines
X ray spectra
X-rays: binaries
title Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20X-Ray%20Spectra%20of%20Stellar-mass%20Black%20Holes%20from%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kinch,%20Brooks%20E.&rft.date=2019-03-01&rft.volume=873&rft.issue=1&rft.spage=71&rft.pages=71-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab05d5&rft_dat=%3Cproquest_O3W%3E2365901034%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365901034&rft_id=info:pmid/&rfr_iscdi=true