Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations
We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-03, Vol.873 (1), p.71 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | The Astrophysical journal |
container_volume | 873 |
creator | Kinch, Brooks E. Schnittman, Jeremy D. Kallman, Timothy R. Krolik, Julian H. |
description | We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances. |
doi_str_mv | 10.3847/1538-4357/ab05d5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab05d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365901034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwMzBYgpHQS-w48QgV0EpIIApSN-viOJCSxMFOh_57EgXBAtPp7r13T_oIOQ3hiqU8mYUxSwPO4mSGGcR5vEcmP6d9MgEAHgiWrA_JkfebYY2knJDlkzN5qbuyeaPdu6Hr4Bl3dNUa3TmktqCrzlQVuqBG7-lNhfqDLmxlPC2cremqrLcVdqVt_DE5KLDy5uR7Tsnr3e3LfBE8PN4v59cPgWZx2gUmLSAXuYhCyVmGTDAUKDWIRHOIUErggCaLY14IwFwDYp6ZPsFTjhAlbErOx7-ts59b4zu1sVvX9JUqYiKWEALjvQtGl3bWe2cK1bqyRrdTIagBmBroqIGOGoH1kbMx0qBH1XSufwih7FFFQg7yxSiXtv2txHaj0oSpUCWhavOit13-Yfu39AsxtoBR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365901034</pqid></control><display><type>article</type><title>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</title><source>IOP Publishing Free Content</source><creator>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Kallman, Timothy R. ; Krolik, Julian H.</creator><creatorcontrib>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Kallman, Timothy R. ; Krolik, Julian H.</creatorcontrib><description>We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab05d5</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Abundance ; accretion, accretion disks ; Astrophysics ; black hole physics ; Black holes ; Computational fluid dynamics ; Computer simulation ; Cooling rate ; Corona ; Density ; Deposition ; Emission ; Emission lines ; Energy conservation ; Flow geometry ; Fluid flow ; High energy astronomy ; Inclination ; Iterative methods ; line: formation ; Magnetohydrodynamics ; Photoionization ; Power law ; Radiation ; Radiation transport ; radiative transfer ; Reprocessing ; Simulation ; Subroutines ; X ray spectra ; X-rays: binaries</subject><ispartof>The Astrophysical journal, 2019-03, Vol.873 (1), p.71</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 01, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</citedby><cites>FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</cites><orcidid>0000-0002-2995-7717 ; 0000-0002-5779-6906 ; 0000-0002-8676-425X ; 0000-0002-2942-8399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab05d5/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab05d5$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Kinch, Brooks E.</creatorcontrib><creatorcontrib>Schnittman, Jeremy D.</creatorcontrib><creatorcontrib>Kallman, Timothy R.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><title>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.</description><subject>Abundance</subject><subject>accretion, accretion disks</subject><subject>Astrophysics</subject><subject>black hole physics</subject><subject>Black holes</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cooling rate</subject><subject>Corona</subject><subject>Density</subject><subject>Deposition</subject><subject>Emission</subject><subject>Emission lines</subject><subject>Energy conservation</subject><subject>Flow geometry</subject><subject>Fluid flow</subject><subject>High energy astronomy</subject><subject>Inclination</subject><subject>Iterative methods</subject><subject>line: formation</subject><subject>Magnetohydrodynamics</subject><subject>Photoionization</subject><subject>Power law</subject><subject>Radiation</subject><subject>Radiation transport</subject><subject>radiative transfer</subject><subject>Reprocessing</subject><subject>Simulation</subject><subject>Subroutines</subject><subject>X ray spectra</subject><subject>X-rays: binaries</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp1kDFPwzAQhS0EEqWwMzBYgpHQS-w48QgV0EpIIApSN-viOJCSxMFOh_57EgXBAtPp7r13T_oIOQ3hiqU8mYUxSwPO4mSGGcR5vEcmP6d9MgEAHgiWrA_JkfebYY2knJDlkzN5qbuyeaPdu6Hr4Bl3dNUa3TmktqCrzlQVuqBG7-lNhfqDLmxlPC2cremqrLcVdqVt_DE5KLDy5uR7Tsnr3e3LfBE8PN4v59cPgWZx2gUmLSAXuYhCyVmGTDAUKDWIRHOIUErggCaLY14IwFwDYp6ZPsFTjhAlbErOx7-ts59b4zu1sVvX9JUqYiKWEALjvQtGl3bWe2cK1bqyRrdTIagBmBroqIGOGoH1kbMx0qBH1XSufwih7FFFQg7yxSiXtv2txHaj0oSpUCWhavOit13-Yfu39AsxtoBR</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Kinch, Brooks E.</creator><creator>Schnittman, Jeremy D.</creator><creator>Kallman, Timothy R.</creator><creator>Krolik, Julian H.</creator><general>The American Astronomical Society</general><general>American Astronomical Society</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><orcidid>https://orcid.org/0000-0002-5779-6906</orcidid><orcidid>https://orcid.org/0000-0002-8676-425X</orcidid><orcidid>https://orcid.org/0000-0002-2942-8399</orcidid></search><sort><creationdate>20190301</creationdate><title>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</title><author>Kinch, Brooks E. ; Schnittman, Jeremy D. ; Kallman, Timothy R. ; Krolik, Julian H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e8f0d6d621943ba363a6a9c067c402a99040aeb554f60adc0aadbed6d484a0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>accretion, accretion disks</topic><topic>Astrophysics</topic><topic>black hole physics</topic><topic>Black holes</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cooling rate</topic><topic>Corona</topic><topic>Density</topic><topic>Deposition</topic><topic>Emission</topic><topic>Emission lines</topic><topic>Energy conservation</topic><topic>Flow geometry</topic><topic>Fluid flow</topic><topic>High energy astronomy</topic><topic>Inclination</topic><topic>Iterative methods</topic><topic>line: formation</topic><topic>Magnetohydrodynamics</topic><topic>Photoionization</topic><topic>Power law</topic><topic>Radiation</topic><topic>Radiation transport</topic><topic>radiative transfer</topic><topic>Reprocessing</topic><topic>Simulation</topic><topic>Subroutines</topic><topic>X ray spectra</topic><topic>X-rays: binaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinch, Brooks E.</creatorcontrib><creatorcontrib>Schnittman, Jeremy D.</creatorcontrib><creatorcontrib>Kallman, Timothy R.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kinch, Brooks E.</au><au>Schnittman, Jeremy D.</au><au>Kallman, Timothy R.</au><au>Krolik, Julian H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>873</volume><issue>1</issue><spage>71</spage><pages>71-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a harm3d GRMHD simulation are post-processed by an improved version of the Monte Carlo radiation transport code pandurata (in the corona) and the Feautrier solver ptransx (in the disk), with xstar subroutines. The codes are run in a sequential, iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer, including features, such as the Fe K emission line and corresponding K-edge absorption trough, due to disk reprocessing of coronal power. For the example cases we consider-a non-rotating 10 M black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington-we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power laws extending to high energy (Γ = 2.7-4.5), and prominent, asymmetric Fe K emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry-no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., is needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab05d5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><orcidid>https://orcid.org/0000-0002-5779-6906</orcidid><orcidid>https://orcid.org/0000-0002-8676-425X</orcidid><orcidid>https://orcid.org/0000-0002-2942-8399</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-03, Vol.873 (1), p.71 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ab05d5 |
source | IOP Publishing Free Content |
subjects | Abundance accretion, accretion disks Astrophysics black hole physics Black holes Computational fluid dynamics Computer simulation Cooling rate Corona Density Deposition Emission Emission lines Energy conservation Flow geometry Fluid flow High energy astronomy Inclination Iterative methods line: formation Magnetohydrodynamics Photoionization Power law Radiation Radiation transport radiative transfer Reprocessing Simulation Subroutines X ray spectra X-rays: binaries |
title | Predicting the X-Ray Spectra of Stellar-mass Black Holes from Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20X-Ray%20Spectra%20of%20Stellar-mass%20Black%20Holes%20from%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kinch,%20Brooks%20E.&rft.date=2019-03-01&rft.volume=873&rft.issue=1&rft.spage=71&rft.pages=71-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab05d5&rft_dat=%3Cproquest_O3W%3E2365901034%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365901034&rft_id=info:pmid/&rfr_iscdi=true |