Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma
The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-01, Vol.870 (2), p.121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 121 |
container_title | The Astrophysical journal |
container_volume | 870 |
creator | Markovskii, S. A. Chandran, Benjamin D. G. Vasquez, Bernard J. |
description | The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma. |
doi_str_mv | 10.3847/1538-4357/aaf423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aaf423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365961256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</originalsourceid><addsrcrecordid>eNp9kMtLAzEQxoMoWKt3jwHx5to89pE9lvpoQbT4AG9hupvYlG2yJinSu3-421b0Ip5mvpnfNwMfQqeUXHKRFgOacZGkPCsGADplfA_1fkb7qEcISZOcF6-H6CiExUaysuyhz4mzeKwgGvuGH1VYNdtOe7fEca7wlapUo3y37zin8bBp54Cn4KOpGhXwbI076V10NoHt7sobHfHEhggz05i4xsZ2zL2zK2u080v85BrwyYexNZ42EJZwjA40NEGdfNc-erm5fh6Nk7uH28loeJdUXJCYsDqvM6orIfKipkynogTgvMggExXktQBeK1aUNXCVK0ZK0IwozkqqNadU8z46291tvXtfqRDlwq287V5KxvOszCnL8o4iO6ryLgSvtGy9WYJfS0rkJmu5CVZugpW7rDvLxc5iXPt78x_8_A8c2oUUBZFMUkZlW2v-BSYqjeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365961256</pqid></control><display><type>article</type><title>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</title><source>IOP Publishing Free Content</source><creator>Markovskii, S. A. ; Chandran, Benjamin D. G. ; Vasquez, Bernard J.</creator><creatorcontrib>Markovskii, S. A. ; Chandran, Benjamin D. G. ; Vasquez, Bernard J.</creatorcontrib><description>The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaf423</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Alpha particles ; Alpha rays ; Anisotropy ; Astrophysics ; Computer simulation ; Cyclotrons ; Deceleration ; Drift ; Energy conversion ; Inhomogeneity ; instabilities ; Instability ; Ion heating ; Magnetic fields ; Nonuniform plasmas ; Numerical simulations ; Particle in cell technique ; Particle physics ; Plasma heating ; plasmas ; Propagation modes ; Protons ; Solar wind ; Stability ; Temperature ; Wave propagation ; Wavelengths ; Waves</subject><ispartof>The Astrophysical journal, 2019-01, Vol.870 (2), p.121</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</citedby><cites>FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</cites><orcidid>0000-0003-4177-3328 ; 0000-0001-8593-7289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaf423/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaf423$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Markovskii, S. A.</creatorcontrib><creatorcontrib>Chandran, Benjamin D. G.</creatorcontrib><creatorcontrib>Vasquez, Bernard J.</creatorcontrib><title>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma.</description><subject>Alpha particles</subject><subject>Alpha rays</subject><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Computer simulation</subject><subject>Cyclotrons</subject><subject>Deceleration</subject><subject>Drift</subject><subject>Energy conversion</subject><subject>Inhomogeneity</subject><subject>instabilities</subject><subject>Instability</subject><subject>Ion heating</subject><subject>Magnetic fields</subject><subject>Nonuniform plasmas</subject><subject>Numerical simulations</subject><subject>Particle in cell technique</subject><subject>Particle physics</subject><subject>Plasma heating</subject><subject>plasmas</subject><subject>Propagation modes</subject><subject>Protons</subject><subject>Solar wind</subject><subject>Stability</subject><subject>Temperature</subject><subject>Wave propagation</subject><subject>Wavelengths</subject><subject>Waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQxoMoWKt3jwHx5to89pE9lvpoQbT4AG9hupvYlG2yJinSu3-421b0Ip5mvpnfNwMfQqeUXHKRFgOacZGkPCsGADplfA_1fkb7qEcISZOcF6-H6CiExUaysuyhz4mzeKwgGvuGH1VYNdtOe7fEca7wlapUo3y37zin8bBp54Cn4KOpGhXwbI076V10NoHt7sobHfHEhggz05i4xsZ2zL2zK2u080v85BrwyYexNZ42EJZwjA40NEGdfNc-erm5fh6Nk7uH28loeJdUXJCYsDqvM6orIfKipkynogTgvMggExXktQBeK1aUNXCVK0ZK0IwozkqqNadU8z46291tvXtfqRDlwq287V5KxvOszCnL8o4iO6ryLgSvtGy9WYJfS0rkJmu5CVZugpW7rDvLxc5iXPt78x_8_A8c2oUUBZFMUkZlW2v-BSYqjeg</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Markovskii, S. A.</creator><creator>Chandran, Benjamin D. G.</creator><creator>Vasquez, Bernard J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4177-3328</orcidid><orcidid>https://orcid.org/0000-0001-8593-7289</orcidid></search><sort><creationdate>20190110</creationdate><title>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</title><author>Markovskii, S. A. ; Chandran, Benjamin D. G. ; Vasquez, Bernard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alpha particles</topic><topic>Alpha rays</topic><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Computer simulation</topic><topic>Cyclotrons</topic><topic>Deceleration</topic><topic>Drift</topic><topic>Energy conversion</topic><topic>Inhomogeneity</topic><topic>instabilities</topic><topic>Instability</topic><topic>Ion heating</topic><topic>Magnetic fields</topic><topic>Nonuniform plasmas</topic><topic>Numerical simulations</topic><topic>Particle in cell technique</topic><topic>Particle physics</topic><topic>Plasma heating</topic><topic>plasmas</topic><topic>Propagation modes</topic><topic>Protons</topic><topic>Solar wind</topic><topic>Stability</topic><topic>Temperature</topic><topic>Wave propagation</topic><topic>Wavelengths</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markovskii, S. A.</creatorcontrib><creatorcontrib>Chandran, Benjamin D. G.</creatorcontrib><creatorcontrib>Vasquez, Bernard J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Markovskii, S. A.</au><au>Chandran, Benjamin D. G.</au><au>Vasquez, Bernard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>870</volume><issue>2</issue><spage>121</spage><pages>121-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaf423</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4177-3328</orcidid><orcidid>https://orcid.org/0000-0001-8593-7289</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-01, Vol.870 (2), p.121 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aaf423 |
source | IOP Publishing Free Content |
subjects | Alpha particles Alpha rays Anisotropy Astrophysics Computer simulation Cyclotrons Deceleration Drift Energy conversion Inhomogeneity instabilities Instability Ion heating Magnetic fields Nonuniform plasmas Numerical simulations Particle in cell technique Particle physics Plasma heating plasmas Propagation modes Protons Solar wind Stability Temperature Wave propagation Wavelengths Waves |
title | Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Heating%20Resulting%20from%20the%20Deceleration%20of%20Alpha%20Particles%20by%20a%20Proton-alpha%20Drift%20Instability%20in%20a%20Nonuniform%20Solar-wind%20Plasma&rft.jtitle=The%20Astrophysical%20journal&rft.au=Markovskii,%20S.%20A.&rft.date=2019-01-10&rft.volume=870&rft.issue=2&rft.spage=121&rft.pages=121-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaf423&rft_dat=%3Cproquest_O3W%3E2365961256%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365961256&rft_id=info:pmid/&rfr_iscdi=true |