Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma

The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-01, Vol.870 (2), p.121
Hauptverfasser: Markovskii, S. A., Chandran, Benjamin D. G., Vasquez, Bernard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 121
container_title The Astrophysical journal
container_volume 870
creator Markovskii, S. A.
Chandran, Benjamin D. G.
Vasquez, Bernard J.
description The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma.
doi_str_mv 10.3847/1538-4357/aaf423
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aaf423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365961256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</originalsourceid><addsrcrecordid>eNp9kMtLAzEQxoMoWKt3jwHx5to89pE9lvpoQbT4AG9hupvYlG2yJinSu3-421b0Ip5mvpnfNwMfQqeUXHKRFgOacZGkPCsGADplfA_1fkb7qEcISZOcF6-H6CiExUaysuyhz4mzeKwgGvuGH1VYNdtOe7fEca7wlapUo3y37zin8bBp54Cn4KOpGhXwbI076V10NoHt7sobHfHEhggz05i4xsZ2zL2zK2u080v85BrwyYexNZ42EJZwjA40NEGdfNc-erm5fh6Nk7uH28loeJdUXJCYsDqvM6orIfKipkynogTgvMggExXktQBeK1aUNXCVK0ZK0IwozkqqNadU8z46291tvXtfqRDlwq287V5KxvOszCnL8o4iO6ryLgSvtGy9WYJfS0rkJmu5CVZugpW7rDvLxc5iXPt78x_8_A8c2oUUBZFMUkZlW2v-BSYqjeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365961256</pqid></control><display><type>article</type><title>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</title><source>IOP Publishing Free Content</source><creator>Markovskii, S. A. ; Chandran, Benjamin D. G. ; Vasquez, Bernard J.</creator><creatorcontrib>Markovskii, S. A. ; Chandran, Benjamin D. G. ; Vasquez, Bernard J.</creatorcontrib><description>The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaf423</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Alpha particles ; Alpha rays ; Anisotropy ; Astrophysics ; Computer simulation ; Cyclotrons ; Deceleration ; Drift ; Energy conversion ; Inhomogeneity ; instabilities ; Instability ; Ion heating ; Magnetic fields ; Nonuniform plasmas ; Numerical simulations ; Particle in cell technique ; Particle physics ; Plasma heating ; plasmas ; Propagation modes ; Protons ; Solar wind ; Stability ; Temperature ; Wave propagation ; Wavelengths ; Waves</subject><ispartof>The Astrophysical journal, 2019-01, Vol.870 (2), p.121</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</citedby><cites>FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</cites><orcidid>0000-0003-4177-3328 ; 0000-0001-8593-7289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaf423/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaf423$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Markovskii, S. A.</creatorcontrib><creatorcontrib>Chandran, Benjamin D. G.</creatorcontrib><creatorcontrib>Vasquez, Bernard J.</creatorcontrib><title>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma.</description><subject>Alpha particles</subject><subject>Alpha rays</subject><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Computer simulation</subject><subject>Cyclotrons</subject><subject>Deceleration</subject><subject>Drift</subject><subject>Energy conversion</subject><subject>Inhomogeneity</subject><subject>instabilities</subject><subject>Instability</subject><subject>Ion heating</subject><subject>Magnetic fields</subject><subject>Nonuniform plasmas</subject><subject>Numerical simulations</subject><subject>Particle in cell technique</subject><subject>Particle physics</subject><subject>Plasma heating</subject><subject>plasmas</subject><subject>Propagation modes</subject><subject>Protons</subject><subject>Solar wind</subject><subject>Stability</subject><subject>Temperature</subject><subject>Wave propagation</subject><subject>Wavelengths</subject><subject>Waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQxoMoWKt3jwHx5to89pE9lvpoQbT4AG9hupvYlG2yJinSu3-421b0Ip5mvpnfNwMfQqeUXHKRFgOacZGkPCsGADplfA_1fkb7qEcISZOcF6-H6CiExUaysuyhz4mzeKwgGvuGH1VYNdtOe7fEca7wlapUo3y37zin8bBp54Cn4KOpGhXwbI076V10NoHt7sobHfHEhggz05i4xsZ2zL2zK2u080v85BrwyYexNZ42EJZwjA40NEGdfNc-erm5fh6Nk7uH28loeJdUXJCYsDqvM6orIfKipkynogTgvMggExXktQBeK1aUNXCVK0ZK0IwozkqqNadU8z46291tvXtfqRDlwq287V5KxvOszCnL8o4iO6ryLgSvtGy9WYJfS0rkJmu5CVZugpW7rDvLxc5iXPt78x_8_A8c2oUUBZFMUkZlW2v-BSYqjeg</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Markovskii, S. A.</creator><creator>Chandran, Benjamin D. G.</creator><creator>Vasquez, Bernard J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4177-3328</orcidid><orcidid>https://orcid.org/0000-0001-8593-7289</orcidid></search><sort><creationdate>20190110</creationdate><title>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</title><author>Markovskii, S. A. ; Chandran, Benjamin D. G. ; Vasquez, Bernard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2d6d51fc8867d12f489aa3375a58ca6d8a3de279da3e6e209af20e3291ff311f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alpha particles</topic><topic>Alpha rays</topic><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Computer simulation</topic><topic>Cyclotrons</topic><topic>Deceleration</topic><topic>Drift</topic><topic>Energy conversion</topic><topic>Inhomogeneity</topic><topic>instabilities</topic><topic>Instability</topic><topic>Ion heating</topic><topic>Magnetic fields</topic><topic>Nonuniform plasmas</topic><topic>Numerical simulations</topic><topic>Particle in cell technique</topic><topic>Particle physics</topic><topic>Plasma heating</topic><topic>plasmas</topic><topic>Propagation modes</topic><topic>Protons</topic><topic>Solar wind</topic><topic>Stability</topic><topic>Temperature</topic><topic>Wave propagation</topic><topic>Wavelengths</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markovskii, S. A.</creatorcontrib><creatorcontrib>Chandran, Benjamin D. G.</creatorcontrib><creatorcontrib>Vasquez, Bernard J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Markovskii, S. A.</au><au>Chandran, Benjamin D. G.</au><au>Vasquez, Bernard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>870</volume><issue>2</issue><spage>121</spage><pages>121-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The deceleration of alpha particle observed in the fast solar wind can contribute to the plasma heating between 0.3 and 1 au. The observational data suggest that the energy released from the deceleration has to be channeled to perpendicular heating of the protons. A possible mechanism of the energy conversion is a proton-alpha drift instability. We present hybrid numerical simulations of this instability in a warm plasma with particle-in-cell ions and a neutralizing electron fluid. The parallel temperature of the alpha particles is assumed to be larger than the perpendicular temperature. This sense of the anisotropy makes parallel-propagating fast magnetosonic waves the most easily excited modes. For typical ion beta values at 0.3 to 1 au, we find that the instability does not produce evident perpendicular heating of the protons if the initial background plasma is uniform. The lack of the heating is related to inefficient cyclotron interaction of the protons with the parallel-propagating fast modes. However, the background plasma in the solar wind is unlikely to be uniform. We consider the background variations across the mean magnetic field in the form of single or multiple equilibrium structures. The inhomogeneity modifies the unstable waves by making them oblique. Furthermore, their wavenumber spectrum extends to perpendicular wavenumbers of the order of the inverse proton gyroradius. Such waves can interact with the protons more efficiently. We show that significant and preferentially perpendicular heating of the protons is present in the nonuniform plasma.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaf423</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4177-3328</orcidid><orcidid>https://orcid.org/0000-0001-8593-7289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-01, Vol.870 (2), p.121
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_aaf423
source IOP Publishing Free Content
subjects Alpha particles
Alpha rays
Anisotropy
Astrophysics
Computer simulation
Cyclotrons
Deceleration
Drift
Energy conversion
Inhomogeneity
instabilities
Instability
Ion heating
Magnetic fields
Nonuniform plasmas
Numerical simulations
Particle in cell technique
Particle physics
Plasma heating
plasmas
Propagation modes
Protons
Solar wind
Stability
Temperature
Wave propagation
Wavelengths
Waves
title Ion Heating Resulting from the Deceleration of Alpha Particles by a Proton-alpha Drift Instability in a Nonuniform Solar-wind Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Heating%20Resulting%20from%20the%20Deceleration%20of%20Alpha%20Particles%20by%20a%20Proton-alpha%20Drift%20Instability%20in%20a%20Nonuniform%20Solar-wind%20Plasma&rft.jtitle=The%20Astrophysical%20journal&rft.au=Markovskii,%20S.%20A.&rft.date=2019-01-10&rft.volume=870&rft.issue=2&rft.spage=121&rft.pages=121-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaf423&rft_dat=%3Cproquest_O3W%3E2365961256%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365961256&rft_id=info:pmid/&rfr_iscdi=true