Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules
Extremely irradiated hot Jupiters, exoplanets reaching dayside temperatures >2000 K, stretch our understanding of planetary atmospheres and the models we use to interpret observations. While these objects are planets in every other sense, their atmospheres reach temperatures at low pressures comp...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-10, Vol.866 (1), p.27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | The Astrophysical journal |
container_volume | 866 |
creator | Lothringer, Joshua D. Barman, Travis Koskinen, Tommi |
description | Extremely irradiated hot Jupiters, exoplanets reaching dayside temperatures >2000 K, stretch our understanding of planetary atmospheres and the models we use to interpret observations. While these objects are planets in every other sense, their atmospheres reach temperatures at low pressures comparable only to stellar atmospheres. In order to understand our a priori theoretical expectations for the nature of these objects, we self-consistently model a number of extreme hot Jupiter scenarios with the PHOENIX model atmosphere code. PHOENIX is well-tested on objects from cool brown dwarfs to expanding supernovae shells, and its expansive opacity database from the UV to far-IR make PHOENIX well-suited to understanding extremely irradiated hot Jupiters. We find several fundamental differences between hot Jupiters at temperatures >2500 K and their cooler counterparts. First, absorption by atomic metals like Fe and Mg, molecules including SiO and metal hydrides, and continuous opacity sources like H−, all combined with the short-wavelength output of early-type host stars, result in strong thermal inversions, without the need for TiO or VO. Second, many molecular species, including H2O, TiO, and VO are thermally dissociated at pressures probed by transit and eclipse observations, potentially biasing retrieval algorithms that assume uniform vertical abundances. We discuss other interesting properties of these objects, as well as future prospects and predictions for observing and characterizing this unique class of astrophysical object, including the first self-consistent model of the hottest known Jovian planet, KELT-9b. |
doi_str_mv | 10.3847/1538-4357/aadd9e |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aadd9e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365798060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-146649df150ec4c75f7073586e2031c6e356f849cd773c9f815d1ca3e2f156d83</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKt7lwFddmwy-R13UqutqN1UcBdCksEp08mYzEj7Bq59RJ_EGSq6EVeXeznfd-EAcIrRBZFUjDEjMqGEibHW1mZuDwx-TvtggBCiCSfi-RAcxbjq1zTLBqCcbprg1q7cwnkI2ha6cRbOfAPv2rpoXIiX8NFXid8U1sF59dZdCl_FEZx9vn_ARa1N0WxHUFcWLl9cWOsSXhcxetM1dSD0OXzwpTNt6eIxOMh1Gd3J9xyCp5vpcjJL7he388nVfWIoZU2CKec0szlmyBlqBMsFEoRJ7lJEsOGOMJ5LmhkrBDFZLjGz2Gji0i7CrSRDcLbrrYN_bV1s1Mq3oepeqpRwJjKJOOootKNM8DEGl6s6FGsdtgoj1TtVvUDVC1Q7p11ktIsUvv7t_Ac__wPX9UpJzhVWqVC1zckXLXKGUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365798060</pqid></control><display><type>article</type><title>Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules</title><source>IOP Publishing Free Content</source><creator>Lothringer, Joshua D. ; Barman, Travis ; Koskinen, Tommi</creator><creatorcontrib>Lothringer, Joshua D. ; Barman, Travis ; Koskinen, Tommi</creatorcontrib><description>Extremely irradiated hot Jupiters, exoplanets reaching dayside temperatures >2000 K, stretch our understanding of planetary atmospheres and the models we use to interpret observations. While these objects are planets in every other sense, their atmospheres reach temperatures at low pressures comparable only to stellar atmospheres. In order to understand our a priori theoretical expectations for the nature of these objects, we self-consistently model a number of extreme hot Jupiter scenarios with the PHOENIX model atmosphere code. PHOENIX is well-tested on objects from cool brown dwarfs to expanding supernovae shells, and its expansive opacity database from the UV to far-IR make PHOENIX well-suited to understanding extremely irradiated hot Jupiters. We find several fundamental differences between hot Jupiters at temperatures >2500 K and their cooler counterparts. First, absorption by atomic metals like Fe and Mg, molecules including SiO and metal hydrides, and continuous opacity sources like H−, all combined with the short-wavelength output of early-type host stars, result in strong thermal inversions, without the need for TiO or VO. Second, many molecular species, including H2O, TiO, and VO are thermally dissociated at pressures probed by transit and eclipse observations, potentially biasing retrieval algorithms that assume uniform vertical abundances. We discuss other interesting properties of these objects, as well as future prospects and predictions for observing and characterizing this unique class of astrophysical object, including the first self-consistent model of the hottest known Jovian planet, KELT-9b.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aadd9e</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrochemistry ; Astrophysics ; Atmospheric models ; Atmospheric pressure ; Dissociation ; Extrasolar planets ; Extreme values ; Gas giant planets ; Inversions ; Iron ; Jupiter ; Magnesium ; Metal hydrides ; methods: numerical ; Object recognition ; Opacity ; Planetary atmospheres ; planets and satellites: atmospheres ; Stellar atmospheres ; Supernovae ; Thermal dissociation</subject><ispartof>The Astrophysical journal, 2018-10, Vol.866 (1), p.27</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-146649df150ec4c75f7073586e2031c6e356f849cd773c9f815d1ca3e2f156d83</citedby><cites>FETCH-LOGICAL-c445t-146649df150ec4c75f7073586e2031c6e356f849cd773c9f815d1ca3e2f156d83</cites><orcidid>0000-0002-7129-3002 ; 0000-0003-3667-8633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aadd9e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aadd9e$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lothringer, Joshua D.</creatorcontrib><creatorcontrib>Barman, Travis</creatorcontrib><creatorcontrib>Koskinen, Tommi</creatorcontrib><title>Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Extremely irradiated hot Jupiters, exoplanets reaching dayside temperatures >2000 K, stretch our understanding of planetary atmospheres and the models we use to interpret observations. While these objects are planets in every other sense, their atmospheres reach temperatures at low pressures comparable only to stellar atmospheres. In order to understand our a priori theoretical expectations for the nature of these objects, we self-consistently model a number of extreme hot Jupiter scenarios with the PHOENIX model atmosphere code. PHOENIX is well-tested on objects from cool brown dwarfs to expanding supernovae shells, and its expansive opacity database from the UV to far-IR make PHOENIX well-suited to understanding extremely irradiated hot Jupiters. We find several fundamental differences between hot Jupiters at temperatures >2500 K and their cooler counterparts. First, absorption by atomic metals like Fe and Mg, molecules including SiO and metal hydrides, and continuous opacity sources like H−, all combined with the short-wavelength output of early-type host stars, result in strong thermal inversions, without the need for TiO or VO. Second, many molecular species, including H2O, TiO, and VO are thermally dissociated at pressures probed by transit and eclipse observations, potentially biasing retrieval algorithms that assume uniform vertical abundances. We discuss other interesting properties of these objects, as well as future prospects and predictions for observing and characterizing this unique class of astrophysical object, including the first self-consistent model of the hottest known Jovian planet, KELT-9b.</description><subject>Algorithms</subject><subject>Astrochemistry</subject><subject>Astrophysics</subject><subject>Atmospheric models</subject><subject>Atmospheric pressure</subject><subject>Dissociation</subject><subject>Extrasolar planets</subject><subject>Extreme values</subject><subject>Gas giant planets</subject><subject>Inversions</subject><subject>Iron</subject><subject>Jupiter</subject><subject>Magnesium</subject><subject>Metal hydrides</subject><subject>methods: numerical</subject><subject>Object recognition</subject><subject>Opacity</subject><subject>Planetary atmospheres</subject><subject>planets and satellites: atmospheres</subject><subject>Stellar atmospheres</subject><subject>Supernovae</subject><subject>Thermal dissociation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKt7lwFddmwy-R13UqutqN1UcBdCksEp08mYzEj7Bq59RJ_EGSq6EVeXeznfd-EAcIrRBZFUjDEjMqGEibHW1mZuDwx-TvtggBCiCSfi-RAcxbjq1zTLBqCcbprg1q7cwnkI2ha6cRbOfAPv2rpoXIiX8NFXid8U1sF59dZdCl_FEZx9vn_ARa1N0WxHUFcWLl9cWOsSXhcxetM1dSD0OXzwpTNt6eIxOMh1Gd3J9xyCp5vpcjJL7he388nVfWIoZU2CKec0szlmyBlqBMsFEoRJ7lJEsOGOMJ5LmhkrBDFZLjGz2Gji0i7CrSRDcLbrrYN_bV1s1Mq3oepeqpRwJjKJOOootKNM8DEGl6s6FGsdtgoj1TtVvUDVC1Q7p11ktIsUvv7t_Ac__wPX9UpJzhVWqVC1zckXLXKGUg</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Lothringer, Joshua D.</creator><creator>Barman, Travis</creator><creator>Koskinen, Tommi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7129-3002</orcidid><orcidid>https://orcid.org/0000-0003-3667-8633</orcidid></search><sort><creationdate>20181010</creationdate><title>Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules</title><author>Lothringer, Joshua D. ; Barman, Travis ; Koskinen, Tommi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-146649df150ec4c75f7073586e2031c6e356f849cd773c9f815d1ca3e2f156d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Astrochemistry</topic><topic>Astrophysics</topic><topic>Atmospheric models</topic><topic>Atmospheric pressure</topic><topic>Dissociation</topic><topic>Extrasolar planets</topic><topic>Extreme values</topic><topic>Gas giant planets</topic><topic>Inversions</topic><topic>Iron</topic><topic>Jupiter</topic><topic>Magnesium</topic><topic>Metal hydrides</topic><topic>methods: numerical</topic><topic>Object recognition</topic><topic>Opacity</topic><topic>Planetary atmospheres</topic><topic>planets and satellites: atmospheres</topic><topic>Stellar atmospheres</topic><topic>Supernovae</topic><topic>Thermal dissociation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lothringer, Joshua D.</creatorcontrib><creatorcontrib>Barman, Travis</creatorcontrib><creatorcontrib>Koskinen, Tommi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lothringer, Joshua D.</au><au>Barman, Travis</au><au>Koskinen, Tommi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>866</volume><issue>1</issue><spage>27</spage><pages>27-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Extremely irradiated hot Jupiters, exoplanets reaching dayside temperatures >2000 K, stretch our understanding of planetary atmospheres and the models we use to interpret observations. While these objects are planets in every other sense, their atmospheres reach temperatures at low pressures comparable only to stellar atmospheres. In order to understand our a priori theoretical expectations for the nature of these objects, we self-consistently model a number of extreme hot Jupiter scenarios with the PHOENIX model atmosphere code. PHOENIX is well-tested on objects from cool brown dwarfs to expanding supernovae shells, and its expansive opacity database from the UV to far-IR make PHOENIX well-suited to understanding extremely irradiated hot Jupiters. We find several fundamental differences between hot Jupiters at temperatures >2500 K and their cooler counterparts. First, absorption by atomic metals like Fe and Mg, molecules including SiO and metal hydrides, and continuous opacity sources like H−, all combined with the short-wavelength output of early-type host stars, result in strong thermal inversions, without the need for TiO or VO. Second, many molecular species, including H2O, TiO, and VO are thermally dissociated at pressures probed by transit and eclipse observations, potentially biasing retrieval algorithms that assume uniform vertical abundances. We discuss other interesting properties of these objects, as well as future prospects and predictions for observing and characterizing this unique class of astrophysical object, including the first self-consistent model of the hottest known Jovian planet, KELT-9b.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aadd9e</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7129-3002</orcidid><orcidid>https://orcid.org/0000-0003-3667-8633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-10, Vol.866 (1), p.27 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aadd9e |
source | IOP Publishing Free Content |
subjects | Algorithms Astrochemistry Astrophysics Atmospheric models Atmospheric pressure Dissociation Extrasolar planets Extreme values Gas giant planets Inversions Iron Jupiter Magnesium Metal hydrides methods: numerical Object recognition Opacity Planetary atmospheres planets and satellites: atmospheres Stellar atmospheres Supernovae Thermal dissociation |
title | Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20Irradiated%20Hot%20Jupiters:%20Non-oxide%20Inversions,%20H%E2%88%92%20Opacity,%20and%20Thermal%20Dissociation%20of%20Molecules&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lothringer,%20Joshua%20D.&rft.date=2018-10-10&rft.volume=866&rft.issue=1&rft.spage=27&rft.pages=27-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aadd9e&rft_dat=%3Cproquest_O3W%3E2365798060%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365798060&rft_id=info:pmid/&rfr_iscdi=true |