The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating

We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-09, Vol.865 (1), p.25
Hauptverfasser: Usmanov, Arcadi V., Matthaeus, William H., Goldstein, Melvyn L., Chhiber, Rohit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 25
container_title The Astrophysical journal
container_volume 865
creator Usmanov, Arcadi V.
Matthaeus, William H.
Goldstein, Melvyn L.
Chhiber, Rohit
description We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum.
doi_str_mv 10.3847/1538-4357/aad687
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aad687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365824504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwGv1iVL0jTexpybMPGwit5C2qSuo2u6pEX235ta0ZOnx_v4fR_vfQBcY3RHEsonmJEkooTxiVI6TvgJGP1Kp2CEEKJRTPj7ObjwftevUyFG4JBuDdy0RukjXFY2UxWcW2drBVWt4cZWysG3stb3cAbTrTMm0uXe1L4MSAWfVw9wU-67SrVBgJ9lu4Vp57KuMnVuYOpU7Rvr2u-wlQlU_XEJzgpVeXP1M8fg9XGRzlfR-mX5NJ-to5ww1EYCxbxQhTZY5CyJqRA51lmGWYyCSkjGE5XgghfhPyY4pajIRIyznGlDKDJkDG6G3MbZQ2d8K3e2c-FqL6ckZsmUMkQDhQYqd9Z7ZwrZuHKv3FFiJPtiZd-i7FuUQ7HBcjtYStv8Zf6LfwFZZ3mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365824504</pqid></control><display><type>article</type><title>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</title><source>IOP Publishing Free Content</source><creator>Usmanov, Arcadi V. ; Matthaeus, William H. ; Goldstein, Melvyn L. ; Chhiber, Rohit</creator><creatorcontrib>Usmanov, Arcadi V. ; Matthaeus, William H. ; Goldstein, Melvyn L. ; Chhiber, Rohit</creatorcontrib><description>We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aad687</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Angular momentum ; Astrophysics ; Boundary conditions ; Charged particles ; Computational fluid dynamics ; Computer simulation ; Conduction cooling ; Conduction heating ; Conductive heat transfer ; Cooling effects ; Corona ; Coulomb collisions ; Dipoles ; Eddy viscosity ; Electron effects ; Electron energy ; Fluid flow ; Formulas (mathematics) ; Helicity ; Induction heating ; Magnetohydrodynamic turbulence ; magnetohydrodynamics (MHD) ; Mathematical models ; methods: numerical ; Protons ; Radiative cooling ; Scaling factors ; Solar corona ; Solar wind ; Sun: corona ; Sun: rotation ; Three dimensional models ; Transits ; Turbulence ; Viscosity</subject><ispartof>The Astrophysical journal, 2018-09, Vol.865 (1), p.25</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</citedby><cites>FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</cites><orcidid>0000-0001-7224-6024 ; 0000-0002-7174-6948 ; 0000-0002-0209-152X ; 0000-0002-5317-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aad687/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aad687$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Usmanov, Arcadi V.</creatorcontrib><creatorcontrib>Matthaeus, William H.</creatorcontrib><creatorcontrib>Goldstein, Melvyn L.</creatorcontrib><creatorcontrib>Chhiber, Rohit</creatorcontrib><title>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum.</description><subject>Angular momentum</subject><subject>Astrophysics</subject><subject>Boundary conditions</subject><subject>Charged particles</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conduction cooling</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Cooling effects</subject><subject>Corona</subject><subject>Coulomb collisions</subject><subject>Dipoles</subject><subject>Eddy viscosity</subject><subject>Electron effects</subject><subject>Electron energy</subject><subject>Fluid flow</subject><subject>Formulas (mathematics)</subject><subject>Helicity</subject><subject>Induction heating</subject><subject>Magnetohydrodynamic turbulence</subject><subject>magnetohydrodynamics (MHD)</subject><subject>Mathematical models</subject><subject>methods: numerical</subject><subject>Protons</subject><subject>Radiative cooling</subject><subject>Scaling factors</subject><subject>Solar corona</subject><subject>Solar wind</subject><subject>Sun: corona</subject><subject>Sun: rotation</subject><subject>Three dimensional models</subject><subject>Transits</subject><subject>Turbulence</subject><subject>Viscosity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwGv1iVL0jTexpybMPGwit5C2qSuo2u6pEX235ta0ZOnx_v4fR_vfQBcY3RHEsonmJEkooTxiVI6TvgJGP1Kp2CEEKJRTPj7ObjwftevUyFG4JBuDdy0RukjXFY2UxWcW2drBVWt4cZWysG3stb3cAbTrTMm0uXe1L4MSAWfVw9wU-67SrVBgJ9lu4Vp57KuMnVuYOpU7Rvr2u-wlQlU_XEJzgpVeXP1M8fg9XGRzlfR-mX5NJ-to5ww1EYCxbxQhTZY5CyJqRA51lmGWYyCSkjGE5XgghfhPyY4pajIRIyznGlDKDJkDG6G3MbZQ2d8K3e2c-FqL6ckZsmUMkQDhQYqd9Z7ZwrZuHKv3FFiJPtiZd-i7FuUQ7HBcjtYStv8Zf6LfwFZZ3mQ</recordid><startdate>20180920</startdate><enddate>20180920</enddate><creator>Usmanov, Arcadi V.</creator><creator>Matthaeus, William H.</creator><creator>Goldstein, Melvyn L.</creator><creator>Chhiber, Rohit</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7224-6024</orcidid><orcidid>https://orcid.org/0000-0002-7174-6948</orcidid><orcidid>https://orcid.org/0000-0002-0209-152X</orcidid><orcidid>https://orcid.org/0000-0002-5317-988X</orcidid></search><sort><creationdate>20180920</creationdate><title>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</title><author>Usmanov, Arcadi V. ; Matthaeus, William H. ; Goldstein, Melvyn L. ; Chhiber, Rohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angular momentum</topic><topic>Astrophysics</topic><topic>Boundary conditions</topic><topic>Charged particles</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conduction cooling</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Cooling effects</topic><topic>Corona</topic><topic>Coulomb collisions</topic><topic>Dipoles</topic><topic>Eddy viscosity</topic><topic>Electron effects</topic><topic>Electron energy</topic><topic>Fluid flow</topic><topic>Formulas (mathematics)</topic><topic>Helicity</topic><topic>Induction heating</topic><topic>Magnetohydrodynamic turbulence</topic><topic>magnetohydrodynamics (MHD)</topic><topic>Mathematical models</topic><topic>methods: numerical</topic><topic>Protons</topic><topic>Radiative cooling</topic><topic>Scaling factors</topic><topic>Solar corona</topic><topic>Solar wind</topic><topic>Sun: corona</topic><topic>Sun: rotation</topic><topic>Three dimensional models</topic><topic>Transits</topic><topic>Turbulence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usmanov, Arcadi V.</creatorcontrib><creatorcontrib>Matthaeus, William H.</creatorcontrib><creatorcontrib>Goldstein, Melvyn L.</creatorcontrib><creatorcontrib>Chhiber, Rohit</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Usmanov, Arcadi V.</au><au>Matthaeus, William H.</au><au>Goldstein, Melvyn L.</au><au>Chhiber, Rohit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-09-20</date><risdate>2018</risdate><volume>865</volume><issue>1</issue><spage>25</spage><pages>25-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aad687</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7224-6024</orcidid><orcidid>https://orcid.org/0000-0002-7174-6948</orcidid><orcidid>https://orcid.org/0000-0002-0209-152X</orcidid><orcidid>https://orcid.org/0000-0002-5317-988X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-09, Vol.865 (1), p.25
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_aad687
source IOP Publishing Free Content
subjects Angular momentum
Astrophysics
Boundary conditions
Charged particles
Computational fluid dynamics
Computer simulation
Conduction cooling
Conduction heating
Conductive heat transfer
Cooling effects
Corona
Coulomb collisions
Dipoles
Eddy viscosity
Electron effects
Electron energy
Fluid flow
Formulas (mathematics)
Helicity
Induction heating
Magnetohydrodynamic turbulence
magnetohydrodynamics (MHD)
Mathematical models
methods: numerical
Protons
Radiative cooling
Scaling factors
Solar corona
Solar wind
Sun: corona
Sun: rotation
Three dimensional models
Transits
Turbulence
Viscosity
title The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Steady%20Global%20Corona%20and%20Solar%20Wind:%20A%20Three-dimensional%20MHD%20Simulation%20with%20Turbulence%20Transport%20and%20Heating&rft.jtitle=The%20Astrophysical%20journal&rft.au=Usmanov,%20Arcadi%20V.&rft.date=2018-09-20&rft.volume=865&rft.issue=1&rft.spage=25&rft.pages=25-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aad687&rft_dat=%3Cproquest_O3W%3E2365824504%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365824504&rft_id=info:pmid/&rfr_iscdi=true