The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating
We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The mod...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-09, Vol.865 (1), p.25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | The Astrophysical journal |
container_volume | 865 |
creator | Usmanov, Arcadi V. Matthaeus, William H. Goldstein, Melvyn L. Chhiber, Rohit |
description | We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum. |
doi_str_mv | 10.3847/1538-4357/aad687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aad687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365824504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwGv1iVL0jTexpybMPGwit5C2qSuo2u6pEX235ta0ZOnx_v4fR_vfQBcY3RHEsonmJEkooTxiVI6TvgJGP1Kp2CEEKJRTPj7ObjwftevUyFG4JBuDdy0RukjXFY2UxWcW2drBVWt4cZWysG3stb3cAbTrTMm0uXe1L4MSAWfVw9wU-67SrVBgJ9lu4Vp57KuMnVuYOpU7Rvr2u-wlQlU_XEJzgpVeXP1M8fg9XGRzlfR-mX5NJ-to5ww1EYCxbxQhTZY5CyJqRA51lmGWYyCSkjGE5XgghfhPyY4pajIRIyznGlDKDJkDG6G3MbZQ2d8K3e2c-FqL6ckZsmUMkQDhQYqd9Z7ZwrZuHKv3FFiJPtiZd-i7FuUQ7HBcjtYStv8Zf6LfwFZZ3mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365824504</pqid></control><display><type>article</type><title>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</title><source>IOP Publishing Free Content</source><creator>Usmanov, Arcadi V. ; Matthaeus, William H. ; Goldstein, Melvyn L. ; Chhiber, Rohit</creator><creatorcontrib>Usmanov, Arcadi V. ; Matthaeus, William H. ; Goldstein, Melvyn L. ; Chhiber, Rohit</creatorcontrib><description>We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aad687</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Angular momentum ; Astrophysics ; Boundary conditions ; Charged particles ; Computational fluid dynamics ; Computer simulation ; Conduction cooling ; Conduction heating ; Conductive heat transfer ; Cooling effects ; Corona ; Coulomb collisions ; Dipoles ; Eddy viscosity ; Electron effects ; Electron energy ; Fluid flow ; Formulas (mathematics) ; Helicity ; Induction heating ; Magnetohydrodynamic turbulence ; magnetohydrodynamics (MHD) ; Mathematical models ; methods: numerical ; Protons ; Radiative cooling ; Scaling factors ; Solar corona ; Solar wind ; Sun: corona ; Sun: rotation ; Three dimensional models ; Transits ; Turbulence ; Viscosity</subject><ispartof>The Astrophysical journal, 2018-09, Vol.865 (1), p.25</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</citedby><cites>FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</cites><orcidid>0000-0001-7224-6024 ; 0000-0002-7174-6948 ; 0000-0002-0209-152X ; 0000-0002-5317-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aad687/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aad687$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Usmanov, Arcadi V.</creatorcontrib><creatorcontrib>Matthaeus, William H.</creatorcontrib><creatorcontrib>Goldstein, Melvyn L.</creatorcontrib><creatorcontrib>Chhiber, Rohit</creatorcontrib><title>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum.</description><subject>Angular momentum</subject><subject>Astrophysics</subject><subject>Boundary conditions</subject><subject>Charged particles</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conduction cooling</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Cooling effects</subject><subject>Corona</subject><subject>Coulomb collisions</subject><subject>Dipoles</subject><subject>Eddy viscosity</subject><subject>Electron effects</subject><subject>Electron energy</subject><subject>Fluid flow</subject><subject>Formulas (mathematics)</subject><subject>Helicity</subject><subject>Induction heating</subject><subject>Magnetohydrodynamic turbulence</subject><subject>magnetohydrodynamics (MHD)</subject><subject>Mathematical models</subject><subject>methods: numerical</subject><subject>Protons</subject><subject>Radiative cooling</subject><subject>Scaling factors</subject><subject>Solar corona</subject><subject>Solar wind</subject><subject>Sun: corona</subject><subject>Sun: rotation</subject><subject>Three dimensional models</subject><subject>Transits</subject><subject>Turbulence</subject><subject>Viscosity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwGv1iVL0jTexpybMPGwit5C2qSuo2u6pEX235ta0ZOnx_v4fR_vfQBcY3RHEsonmJEkooTxiVI6TvgJGP1Kp2CEEKJRTPj7ObjwftevUyFG4JBuDdy0RukjXFY2UxWcW2drBVWt4cZWysG3stb3cAbTrTMm0uXe1L4MSAWfVw9wU-67SrVBgJ9lu4Vp57KuMnVuYOpU7Rvr2u-wlQlU_XEJzgpVeXP1M8fg9XGRzlfR-mX5NJ-to5ww1EYCxbxQhTZY5CyJqRA51lmGWYyCSkjGE5XgghfhPyY4pajIRIyznGlDKDJkDG6G3MbZQ2d8K3e2c-FqL6ckZsmUMkQDhQYqd9Z7ZwrZuHKv3FFiJPtiZd-i7FuUQ7HBcjtYStv8Zf6LfwFZZ3mQ</recordid><startdate>20180920</startdate><enddate>20180920</enddate><creator>Usmanov, Arcadi V.</creator><creator>Matthaeus, William H.</creator><creator>Goldstein, Melvyn L.</creator><creator>Chhiber, Rohit</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7224-6024</orcidid><orcidid>https://orcid.org/0000-0002-7174-6948</orcidid><orcidid>https://orcid.org/0000-0002-0209-152X</orcidid><orcidid>https://orcid.org/0000-0002-5317-988X</orcidid></search><sort><creationdate>20180920</creationdate><title>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</title><author>Usmanov, Arcadi V. ; Matthaeus, William H. ; Goldstein, Melvyn L. ; Chhiber, Rohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9067fafde19c586499c1dbb1560afd33b78a81f7f357597440fb961bc5de340e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angular momentum</topic><topic>Astrophysics</topic><topic>Boundary conditions</topic><topic>Charged particles</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conduction cooling</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Cooling effects</topic><topic>Corona</topic><topic>Coulomb collisions</topic><topic>Dipoles</topic><topic>Eddy viscosity</topic><topic>Electron effects</topic><topic>Electron energy</topic><topic>Fluid flow</topic><topic>Formulas (mathematics)</topic><topic>Helicity</topic><topic>Induction heating</topic><topic>Magnetohydrodynamic turbulence</topic><topic>magnetohydrodynamics (MHD)</topic><topic>Mathematical models</topic><topic>methods: numerical</topic><topic>Protons</topic><topic>Radiative cooling</topic><topic>Scaling factors</topic><topic>Solar corona</topic><topic>Solar wind</topic><topic>Sun: corona</topic><topic>Sun: rotation</topic><topic>Three dimensional models</topic><topic>Transits</topic><topic>Turbulence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usmanov, Arcadi V.</creatorcontrib><creatorcontrib>Matthaeus, William H.</creatorcontrib><creatorcontrib>Goldstein, Melvyn L.</creatorcontrib><creatorcontrib>Chhiber, Rohit</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Usmanov, Arcadi V.</au><au>Matthaeus, William H.</au><au>Goldstein, Melvyn L.</au><au>Chhiber, Rohit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-09-20</date><risdate>2018</risdate><volume>865</volume><issue>1</issue><spage>25</spage><pages>25-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a fully three-dimensional magnetohydrodynamic model of the solar corona and solar wind with turbulence transport and heating. The model is based on Reynolds-averaged solar wind equations coupled with transport equations for turbulence energy, cross helicity, and correlation scale. The model includes separate energy equations for protons and electrons and accounts for the effects of electron heat conduction, radiative cooling, Coulomb collisions, Reynolds stresses, eddy viscosity, and turbulent heating of protons and electrons. The computational domain extends from the coronal base to 5 au and is divided into two regions: the inner (coronal) region, 1-30 R☉, and the outer (solar wind) region, 30 R☉-5 au. Numerical steady-state solutions in both regions are constructed by time relaxation in the frame of reference corotating with the Sun. Inner boundary conditions are specified using either a tilted-dipole approximation or synoptic solar magnetograms. The strength of solar dipole is adjusted, and a scaling factor for magnetograms is estimated by comparison with Ulysses observations. Except for electron temperature, the model shows reasonable agreement with Ulysses data during its first and third fast latitude transits. We also derive a formula for the loss of angular momentum caused by the outflowing plasma. The formula takes into account the effects of turbulence. The simulation results show that turbulence can notably affect the Sun's loss of angular momentum.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aad687</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7224-6024</orcidid><orcidid>https://orcid.org/0000-0002-7174-6948</orcidid><orcidid>https://orcid.org/0000-0002-0209-152X</orcidid><orcidid>https://orcid.org/0000-0002-5317-988X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-09, Vol.865 (1), p.25 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aad687 |
source | IOP Publishing Free Content |
subjects | Angular momentum Astrophysics Boundary conditions Charged particles Computational fluid dynamics Computer simulation Conduction cooling Conduction heating Conductive heat transfer Cooling effects Corona Coulomb collisions Dipoles Eddy viscosity Electron effects Electron energy Fluid flow Formulas (mathematics) Helicity Induction heating Magnetohydrodynamic turbulence magnetohydrodynamics (MHD) Mathematical models methods: numerical Protons Radiative cooling Scaling factors Solar corona Solar wind Sun: corona Sun: rotation Three dimensional models Transits Turbulence Viscosity |
title | The Steady Global Corona and Solar Wind: A Three-dimensional MHD Simulation with Turbulence Transport and Heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Steady%20Global%20Corona%20and%20Solar%20Wind:%20A%20Three-dimensional%20MHD%20Simulation%20with%20Turbulence%20Transport%20and%20Heating&rft.jtitle=The%20Astrophysical%20journal&rft.au=Usmanov,%20Arcadi%20V.&rft.date=2018-09-20&rft.volume=865&rft.issue=1&rft.spage=25&rft.pages=25-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aad687&rft_dat=%3Cproquest_O3W%3E2365824504%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365824504&rft_id=info:pmid/&rfr_iscdi=true |