Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System
We experimentally address in this paper the physicochemical effects induced by ionizing photons (energies from 6 to 2000 eV) and swift heavy ions (15.7 MeV 16O5+) in the icy mixture containing N2:CH4 (19:1) at 12 K and 19 K, respectively. The experiments simulate the effect of solar photons and X-ra...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-12, Vol.850 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Astrophysical journal |
container_volume | 850 |
creator | Vasconcelos, Fredson de A. Pilling, Sergio Rocha, Will R. M. Rothard, Hermann Boduch, Philippe |
description | We experimentally address in this paper the physicochemical effects induced by ionizing photons (energies from 6 to 2000 eV) and swift heavy ions (15.7 MeV 16O5+) in the icy mixture containing N2:CH4 (19:1) at 12 K and 19 K, respectively. The experiments simulate the effect of solar photons and X-rays, cosmic rays, and solar energetic particles (medium-mass ions) on the surface of icy bodies in the outer solar system, such as Triton, Titan, Pluto, and several other Kuiper Belt objects. The ice samples were analyzed by infrared spectroscopy (FTIR) at different fluences. From the energetic processing, the production of new molecules was observed. Among them, HCN, C2H4, C2H6, and N3 have the highest production yield. Molecular half-lives of the species of interest were calculated and extrapolated to the astrophysical environment. The effective destruction yield (in molecules/impact) of the parental species processed by the swift ions is up to six orders of magnitude higher than the value determined by employing X-rays. However, due to the differences between the fluxes of both ionizing radiation types in space, the half-lives of nitrogen and methane in the astrophysical scenarios addressed may have a huge variation. Photons dominate the chemical transformations at shorter distances from the Sun. Our results are a step toward a compilation of photochemical and radiolysis data that should allow the modeling of the abundance of astrophysical ices over long periods of time. |
doi_str_mv | 10.3847/1538-4357/aa965f |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aa965f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365902831</sourcerecordid><originalsourceid>FETCH-LOGICAL-i292t-17db0e99f6fecdd7c6305e54900a764b74ab855ff022ddd000bdf39f4ba3475a3</originalsourceid><addsrcrecordid>eNptkU1LAzEQhoMoWKt3jwHx5tpsPjab3rRUWyhWrEJvIbtJakq7WTdbpP56s1T04mWGmXnmHWYGgMsU3ZKc8kHKSJ5QwvhAKZExewR6v6lj0EMI0SQjfHkKzkJYdyEWoge-xpVpVqZ1JXxufGlCcNUKeguf8HA0oXAaU3C8rTd-3xWWyYvaB6gqDRefzrZw6qswhNMIuFK1LkbQ-ia27eG91y42uwq27wbOd61p4MJvVLT70JrtOTixahPMxY_vg7eH8etokszmj9PR3SxxWOA2SbkukBHCZtaUWvMyI4gZRgVCime04FQVOWPWIoy11nGzQlsiLC0UoZwp0gdXB9268R87E1q59rumiiMlJhkTCOckjdT1gXK-_gNUvZY5QxLLlFNZR-E-uPmHS5HsviC7k8vu5PLwBfINnN959A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365902831</pqid></control><display><type>article</type><title>Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System</title><source>IOP Publishing Free Content</source><creator>Vasconcelos, Fredson de A. ; Pilling, Sergio ; Rocha, Will R. M. ; Rothard, Hermann ; Boduch, Philippe</creator><creatorcontrib>Vasconcelos, Fredson de A. ; Pilling, Sergio ; Rocha, Will R. M. ; Rothard, Hermann ; Boduch, Philippe</creatorcontrib><description>We experimentally address in this paper the physicochemical effects induced by ionizing photons (energies from 6 to 2000 eV) and swift heavy ions (15.7 MeV 16O5+) in the icy mixture containing N2:CH4 (19:1) at 12 K and 19 K, respectively. The experiments simulate the effect of solar photons and X-rays, cosmic rays, and solar energetic particles (medium-mass ions) on the surface of icy bodies in the outer solar system, such as Triton, Titan, Pluto, and several other Kuiper Belt objects. The ice samples were analyzed by infrared spectroscopy (FTIR) at different fluences. From the energetic processing, the production of new molecules was observed. Among them, HCN, C2H4, C2H6, and N3 have the highest production yield. Molecular half-lives of the species of interest were calculated and extrapolated to the astrophysical environment. The effective destruction yield (in molecules/impact) of the parental species processed by the swift ions is up to six orders of magnitude higher than the value determined by employing X-rays. However, due to the differences between the fluxes of both ionizing radiation types in space, the half-lives of nitrogen and methane in the astrophysical scenarios addressed may have a huge variation. Photons dominate the chemical transformations at shorter distances from the Sun. Our results are a step toward a compilation of photochemical and radiolysis data that should allow the modeling of the abundance of astrophysical ices over long periods of time.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa965f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>astrochemistry ; Astronomical models ; Astrophysics ; Computer simulation ; Cosmic rays ; Energetic particles ; Environmental degradation ; Fluxes ; Half-life ; Heavy ions ; Icy satellites ; Infrared analysis ; Infrared spectroscopy ; Ionizing radiation ; Ions ; Kuiper belt ; Methane ; methods: laboratory: solid state ; Organic chemistry ; Outer solar system ; Photochemicals ; Photons ; planets and satellites: surfaces ; Pluto ; Pluto (dwarf planet) ; Radiation ; Radiolysis ; Solar energetic particles ; Solar system ; Titan ; Trans-Neptunian objects ; Triton ; X-rays</subject><ispartof>The Astrophysical journal, 2017-12, Vol.850 (2)</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0910-8670 ; 0000-0001-6144-4113 ; 0000-0002-6321-3666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa965f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa965f$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Vasconcelos, Fredson de A.</creatorcontrib><creatorcontrib>Pilling, Sergio</creatorcontrib><creatorcontrib>Rocha, Will R. M.</creatorcontrib><creatorcontrib>Rothard, Hermann</creatorcontrib><creatorcontrib>Boduch, Philippe</creatorcontrib><title>Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We experimentally address in this paper the physicochemical effects induced by ionizing photons (energies from 6 to 2000 eV) and swift heavy ions (15.7 MeV 16O5+) in the icy mixture containing N2:CH4 (19:1) at 12 K and 19 K, respectively. The experiments simulate the effect of solar photons and X-rays, cosmic rays, and solar energetic particles (medium-mass ions) on the surface of icy bodies in the outer solar system, such as Triton, Titan, Pluto, and several other Kuiper Belt objects. The ice samples were analyzed by infrared spectroscopy (FTIR) at different fluences. From the energetic processing, the production of new molecules was observed. Among them, HCN, C2H4, C2H6, and N3 have the highest production yield. Molecular half-lives of the species of interest were calculated and extrapolated to the astrophysical environment. The effective destruction yield (in molecules/impact) of the parental species processed by the swift ions is up to six orders of magnitude higher than the value determined by employing X-rays. However, due to the differences between the fluxes of both ionizing radiation types in space, the half-lives of nitrogen and methane in the astrophysical scenarios addressed may have a huge variation. Photons dominate the chemical transformations at shorter distances from the Sun. Our results are a step toward a compilation of photochemical and radiolysis data that should allow the modeling of the abundance of astrophysical ices over long periods of time.</description><subject>astrochemistry</subject><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Computer simulation</subject><subject>Cosmic rays</subject><subject>Energetic particles</subject><subject>Environmental degradation</subject><subject>Fluxes</subject><subject>Half-life</subject><subject>Heavy ions</subject><subject>Icy satellites</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Ionizing radiation</subject><subject>Ions</subject><subject>Kuiper belt</subject><subject>Methane</subject><subject>methods: laboratory: solid state</subject><subject>Organic chemistry</subject><subject>Outer solar system</subject><subject>Photochemicals</subject><subject>Photons</subject><subject>planets and satellites: surfaces</subject><subject>Pluto</subject><subject>Pluto (dwarf planet)</subject><subject>Radiation</subject><subject>Radiolysis</subject><subject>Solar energetic particles</subject><subject>Solar system</subject><subject>Titan</subject><subject>Trans-Neptunian objects</subject><subject>Triton</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkU1LAzEQhoMoWKt3jwHx5tpsPjab3rRUWyhWrEJvIbtJakq7WTdbpP56s1T04mWGmXnmHWYGgMsU3ZKc8kHKSJ5QwvhAKZExewR6v6lj0EMI0SQjfHkKzkJYdyEWoge-xpVpVqZ1JXxufGlCcNUKeguf8HA0oXAaU3C8rTd-3xWWyYvaB6gqDRefzrZw6qswhNMIuFK1LkbQ-ia27eG91y42uwq27wbOd61p4MJvVLT70JrtOTixahPMxY_vg7eH8etokszmj9PR3SxxWOA2SbkukBHCZtaUWvMyI4gZRgVCime04FQVOWPWIoy11nGzQlsiLC0UoZwp0gdXB9268R87E1q59rumiiMlJhkTCOckjdT1gXK-_gNUvZY5QxLLlFNZR-E-uPmHS5HsviC7k8vu5PLwBfINnN959A</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Vasconcelos, Fredson de A.</creator><creator>Pilling, Sergio</creator><creator>Rocha, Will R. M.</creator><creator>Rothard, Hermann</creator><creator>Boduch, Philippe</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0910-8670</orcidid><orcidid>https://orcid.org/0000-0001-6144-4113</orcidid><orcidid>https://orcid.org/0000-0002-6321-3666</orcidid></search><sort><creationdate>20171201</creationdate><title>Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System</title><author>Vasconcelos, Fredson de A. ; Pilling, Sergio ; Rocha, Will R. M. ; Rothard, Hermann ; Boduch, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i292t-17db0e99f6fecdd7c6305e54900a764b74ab855ff022ddd000bdf39f4ba3475a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>astrochemistry</topic><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Computer simulation</topic><topic>Cosmic rays</topic><topic>Energetic particles</topic><topic>Environmental degradation</topic><topic>Fluxes</topic><topic>Half-life</topic><topic>Heavy ions</topic><topic>Icy satellites</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Ionizing radiation</topic><topic>Ions</topic><topic>Kuiper belt</topic><topic>Methane</topic><topic>methods: laboratory: solid state</topic><topic>Organic chemistry</topic><topic>Outer solar system</topic><topic>Photochemicals</topic><topic>Photons</topic><topic>planets and satellites: surfaces</topic><topic>Pluto</topic><topic>Pluto (dwarf planet)</topic><topic>Radiation</topic><topic>Radiolysis</topic><topic>Solar energetic particles</topic><topic>Solar system</topic><topic>Titan</topic><topic>Trans-Neptunian objects</topic><topic>Triton</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasconcelos, Fredson de A.</creatorcontrib><creatorcontrib>Pilling, Sergio</creatorcontrib><creatorcontrib>Rocha, Will R. M.</creatorcontrib><creatorcontrib>Rothard, Hermann</creatorcontrib><creatorcontrib>Boduch, Philippe</creatorcontrib><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasconcelos, Fredson de A.</au><au>Pilling, Sergio</au><au>Rocha, Will R. M.</au><au>Rothard, Hermann</au><au>Boduch, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>850</volume><issue>2</issue><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We experimentally address in this paper the physicochemical effects induced by ionizing photons (energies from 6 to 2000 eV) and swift heavy ions (15.7 MeV 16O5+) in the icy mixture containing N2:CH4 (19:1) at 12 K and 19 K, respectively. The experiments simulate the effect of solar photons and X-rays, cosmic rays, and solar energetic particles (medium-mass ions) on the surface of icy bodies in the outer solar system, such as Triton, Titan, Pluto, and several other Kuiper Belt objects. The ice samples were analyzed by infrared spectroscopy (FTIR) at different fluences. From the energetic processing, the production of new molecules was observed. Among them, HCN, C2H4, C2H6, and N3 have the highest production yield. Molecular half-lives of the species of interest were calculated and extrapolated to the astrophysical environment. The effective destruction yield (in molecules/impact) of the parental species processed by the swift ions is up to six orders of magnitude higher than the value determined by employing X-rays. However, due to the differences between the fluxes of both ionizing radiation types in space, the half-lives of nitrogen and methane in the astrophysical scenarios addressed may have a huge variation. Photons dominate the chemical transformations at shorter distances from the Sun. Our results are a step toward a compilation of photochemical and radiolysis data that should allow the modeling of the abundance of astrophysical ices over long periods of time.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa965f</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0910-8670</orcidid><orcidid>https://orcid.org/0000-0001-6144-4113</orcidid><orcidid>https://orcid.org/0000-0002-6321-3666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-12, Vol.850 (2) |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aa965f |
source | IOP Publishing Free Content |
subjects | astrochemistry Astronomical models Astrophysics Computer simulation Cosmic rays Energetic particles Environmental degradation Fluxes Half-life Heavy ions Icy satellites Infrared analysis Infrared spectroscopy Ionizing radiation Ions Kuiper belt Methane methods: laboratory: solid state Organic chemistry Outer solar system Photochemicals Photons planets and satellites: surfaces Pluto Pluto (dwarf planet) Radiation Radiolysis Solar energetic particles Solar system Titan Trans-Neptunian objects Triton X-rays |
title | Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20Processing%20of%20N2:CH4%20Ices%20Employing%20X-Rays%20and%20Swift%20Ions:%20Implications%20for%20Icy%20Bodies%20in%20the%20Outer%20Solar%20System&rft.jtitle=The%20Astrophysical%20journal&rft.au=Vasconcelos,%20Fredson%20de%20A.&rft.date=2017-12-01&rft.volume=850&rft.issue=2&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa965f&rft_dat=%3Cproquest_O3W%3E2365902831%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365902831&rft_id=info:pmid/&rfr_iscdi=true |