A Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies
We present an analysis of , [O iii]88, [N ii]122, and far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ∼240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines ("deficits") of line-to-FIR c...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-09, Vol.846 (1), p.32 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an analysis of , [O iii]88, [N ii]122, and far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ∼240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines ("deficits") of line-to-FIR continuum emission for [N ii]122, , and as a function of FIR color and infrared luminosity surface density, . The median electron density of the ionized gas in LIRGs, based on the [N ii]122/[N ii]205 ratio, is = 41 cm−3. We find that the dispersion in the deficit of LIRGs is attributed to a varying fractional contribution of photodissociation regions (PDRs) to the observed emission, f( ) = / , which increases from ∼60% to ∼95% in the warmest LIRGs. The / ratio is tightly correlated with the PDR gas kinetic temperature in sources where is not optically thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, , and intensity of the interstellar radiation field, G, in units of and find G/ ratios of ∼0.1-50 cm3, with ULIRGs populating the upper end of the distribution. There is a relation between G/ and , showing a critical break at 5 × 1010 L kpc−2. Below , G/ remains constant, 0.32 cm3, and variations in are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above , G/ increases rapidly with , signaling a departure from the typical PDR conditions found in normal star-forming galaxies toward more intense/harder radiation fields and compact geometries typical of starbursting sources. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aa81d7 |