Measuring Sub-Kelvin Variations in Stellar Temperature with High-resolution Spectroscopy
The detection of stellar variability often relies on the measurement of selected activity indicators, such as coronal emission lines and nonthermal emissions. On the flip side, the effective stellar temperature is normally seen as one of the key fundamental parameters (with mass and radius) to under...
Gespeichert in:
Veröffentlicht in: | The Astronomical Journal 2024-12, Vol.168 (6), p.252 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 252 |
container_title | The Astronomical Journal |
container_volume | 168 |
creator | Artigau, Étienne Cadieux, Charles Cook, Neil J. Doyon, René Dauplaise, Laurie Arnold, Luc Cadieux, Maya Donati, Jean-François Cristofari, Paul Delfosse, Xavier Fouqué, Pascal Moutou, Claire Larue, Pierre Allart, Romain |
description | The detection of stellar variability often relies on the measurement of selected activity indicators, such as coronal emission lines and nonthermal emissions. On the flip side, the effective stellar temperature is normally seen as one of the key fundamental parameters (with mass and radius) to understanding the basic physical nature of a star and its relation with its environment (e.g., planetary instellation). We present a novel approach for measuring disk-averaged temperature variations to sub-Kelvin accuracy inspired by algorithms developed for precision radial velocity (pRV). This framework uses the entire content of the spectrum, not just preidentified lines, and can be applied to existing data obtained with high-resolution spectrographs. We demonstrate the framework by recovering the known rotation periods and temperature modulation of Barnard star and AU Mic in data sets obtained in the infrared with SPIRou at CHFT and at optical wavelengths on ϵ Eridani with HARPS at ESO 3.6 m telescope. We use observations of the transiting hot Jupiter HD189733b, obtained with SPIRou, to show that this method can unveil the minute temperature variation signature expected during the transit event, an effect analogous to the Rossiter–McLaughlin effect but in temperature space. This method is a powerful new tool for characterizing stellar activity, and in particular temperature and magnetic features at the surfaces of cool stars, affecting both pRV and transit spectroscopic observations. We demonstrate this method in the context of high-resolution spectroscopy but it could be used at lower resolution. |
doi_str_mv | 10.3847/1538-3881/ad7b30 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_ad7b30</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3bc040c860747d88af1b2d513fe0849</doaj_id><sourcerecordid>3127649920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-af1fb80c28d3dd3f1e66cd2c3d06ad9d33881605c91e26c0b3452f71738ccda93</originalsourceid><addsrcrecordid>eNp1kUFP3DAQRq2KSl1o7z1G6q0iMPY4jnNEqHQRi3pYWvVmObaz61WIUzuh4t-TNIiKAyfLozfPM_4I-UzhDCUvz2mBMkcp6bm2ZY3wjqxeSkdkBQA8F6wQH8hxSgcASiXwFfl963Qao-922Xas8xvXPvgu-6Wj14MPXcqm23Zwbatjdufuexf1MEaX_fXDPlv73T6PLoV2nOFs2zszxJBM6B8_kveNbpP79HyekJ9X3-4u1_nmx_fry4tNbhD5kOuGNrUEw6RFa7GhTghjmUELQtvK4jy_gMJU1DFhoEZesKakJUpjrK7whFwvXhv0QfXR3-v4qIL26l8hxJ3ScfCmdcphbYCDkQJKXlopp8drZguKjQPJZ9fXxbXX7SvV-mKjfJdGBVxiUTH2QCf4ywL3MfwZXRrUIYyxm3ZVSFkpeFUxmChYKDP9S4quefFSUHNwak5JzVuqJbip5XRp8aH_73wTfwIRE5kT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127649920</pqid></control><display><type>article</type><title>Measuring Sub-Kelvin Variations in Stellar Temperature with High-resolution Spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Artigau, Étienne ; Cadieux, Charles ; Cook, Neil J. ; Doyon, René ; Dauplaise, Laurie ; Arnold, Luc ; Cadieux, Maya ; Donati, Jean-François ; Cristofari, Paul ; Delfosse, Xavier ; Fouqué, Pascal ; Moutou, Claire ; Larue, Pierre ; Allart, Romain</creator><creatorcontrib>Artigau, Étienne ; Cadieux, Charles ; Cook, Neil J. ; Doyon, René ; Dauplaise, Laurie ; Arnold, Luc ; Cadieux, Maya ; Donati, Jean-François ; Cristofari, Paul ; Delfosse, Xavier ; Fouqué, Pascal ; Moutou, Claire ; Larue, Pierre ; Allart, Romain</creatorcontrib><description>The detection of stellar variability often relies on the measurement of selected activity indicators, such as coronal emission lines and nonthermal emissions. On the flip side, the effective stellar temperature is normally seen as one of the key fundamental parameters (with mass and radius) to understanding the basic physical nature of a star and its relation with its environment (e.g., planetary instellation). We present a novel approach for measuring disk-averaged temperature variations to sub-Kelvin accuracy inspired by algorithms developed for precision radial velocity (pRV). This framework uses the entire content of the spectrum, not just preidentified lines, and can be applied to existing data obtained with high-resolution spectrographs. We demonstrate the framework by recovering the known rotation periods and temperature modulation of Barnard star and AU Mic in data sets obtained in the infrared with SPIRou at CHFT and at optical wavelengths on ϵ Eridani with HARPS at ESO 3.6 m telescope. We use observations of the transiting hot Jupiter HD189733b, obtained with SPIRou, to show that this method can unveil the minute temperature variation signature expected during the transit event, an effect analogous to the Rossiter–McLaughlin effect but in temperature space. This method is a powerful new tool for characterizing stellar activity, and in particular temperature and magnetic features at the surfaces of cool stars, affecting both pRV and transit spectroscopic observations. We demonstrate this method in the context of high-resolution spectroscopy but it could be used at lower resolution.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/ad7b30</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Algorithms ; Cool stars ; Coronal emission lines ; Emission lines ; Emissions ; European Southern Observatory ; Extrasolar planets ; Gas giant planets ; High resolution ; High resolution spectroscopy ; Infrared signatures ; Infrared stars ; Infrared telescopes ; Jupiter ; Planetary rotation ; Radial velocity ; Sciences of the Universe ; Spectrographs ; Spectroscopic analysis ; Spectroscopic observation ; Spectroscopy ; Spectrum analysis ; Stars ; Stellar activity ; Stellar coronas ; Stellar effective temperatures ; Stellar temperature ; Temperature effects ; Temperature variations ; Time series analysis ; Transit ; Wavelengths</subject><ispartof>The Astronomical Journal, 2024-12, Vol.168 (6), p.252</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-af1fb80c28d3dd3f1e66cd2c3d06ad9d33881605c91e26c0b3452f71738ccda93</cites><orcidid>0009-0005-1139-3502 ; 0000-0002-1199-9759 ; 0000-0002-0111-1234 ; 0000-0001-5541-2887 ; 0000-0002-1436-7351 ; 0000-0003-4019-0630 ; 0000-0002-2842-3924 ; 0000-0001-9291-5555 ; 0000-0001-5099-7978 ; 0000-0001-5485-4675 ; 0000-0003-4166-4121 ; 0009-0004-2993-7849 ; 0000-0003-3506-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/ad7b30/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,27924,27925,38890,53867</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04835922$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Artigau, Étienne</creatorcontrib><creatorcontrib>Cadieux, Charles</creatorcontrib><creatorcontrib>Cook, Neil J.</creatorcontrib><creatorcontrib>Doyon, René</creatorcontrib><creatorcontrib>Dauplaise, Laurie</creatorcontrib><creatorcontrib>Arnold, Luc</creatorcontrib><creatorcontrib>Cadieux, Maya</creatorcontrib><creatorcontrib>Donati, Jean-François</creatorcontrib><creatorcontrib>Cristofari, Paul</creatorcontrib><creatorcontrib>Delfosse, Xavier</creatorcontrib><creatorcontrib>Fouqué, Pascal</creatorcontrib><creatorcontrib>Moutou, Claire</creatorcontrib><creatorcontrib>Larue, Pierre</creatorcontrib><creatorcontrib>Allart, Romain</creatorcontrib><title>Measuring Sub-Kelvin Variations in Stellar Temperature with High-resolution Spectroscopy</title><title>The Astronomical Journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>The detection of stellar variability often relies on the measurement of selected activity indicators, such as coronal emission lines and nonthermal emissions. On the flip side, the effective stellar temperature is normally seen as one of the key fundamental parameters (with mass and radius) to understanding the basic physical nature of a star and its relation with its environment (e.g., planetary instellation). We present a novel approach for measuring disk-averaged temperature variations to sub-Kelvin accuracy inspired by algorithms developed for precision radial velocity (pRV). This framework uses the entire content of the spectrum, not just preidentified lines, and can be applied to existing data obtained with high-resolution spectrographs. We demonstrate the framework by recovering the known rotation periods and temperature modulation of Barnard star and AU Mic in data sets obtained in the infrared with SPIRou at CHFT and at optical wavelengths on ϵ Eridani with HARPS at ESO 3.6 m telescope. We use observations of the transiting hot Jupiter HD189733b, obtained with SPIRou, to show that this method can unveil the minute temperature variation signature expected during the transit event, an effect analogous to the Rossiter–McLaughlin effect but in temperature space. This method is a powerful new tool for characterizing stellar activity, and in particular temperature and magnetic features at the surfaces of cool stars, affecting both pRV and transit spectroscopic observations. We demonstrate this method in the context of high-resolution spectroscopy but it could be used at lower resolution.</description><subject>Algorithms</subject><subject>Cool stars</subject><subject>Coronal emission lines</subject><subject>Emission lines</subject><subject>Emissions</subject><subject>European Southern Observatory</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>High resolution</subject><subject>High resolution spectroscopy</subject><subject>Infrared signatures</subject><subject>Infrared stars</subject><subject>Infrared telescopes</subject><subject>Jupiter</subject><subject>Planetary rotation</subject><subject>Radial velocity</subject><subject>Sciences of the Universe</subject><subject>Spectrographs</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopic observation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stars</subject><subject>Stellar activity</subject><subject>Stellar coronas</subject><subject>Stellar effective temperatures</subject><subject>Stellar temperature</subject><subject>Temperature effects</subject><subject>Temperature variations</subject><subject>Time series analysis</subject><subject>Transit</subject><subject>Wavelengths</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUFP3DAQRq2KSl1o7z1G6q0iMPY4jnNEqHQRi3pYWvVmObaz61WIUzuh4t-TNIiKAyfLozfPM_4I-UzhDCUvz2mBMkcp6bm2ZY3wjqxeSkdkBQA8F6wQH8hxSgcASiXwFfl963Qao-922Xas8xvXPvgu-6Wj14MPXcqm23Zwbatjdufuexf1MEaX_fXDPlv73T6PLoV2nOFs2zszxJBM6B8_kveNbpP79HyekJ9X3-4u1_nmx_fry4tNbhD5kOuGNrUEw6RFa7GhTghjmUELQtvK4jy_gMJU1DFhoEZesKakJUpjrK7whFwvXhv0QfXR3-v4qIL26l8hxJ3ScfCmdcphbYCDkQJKXlopp8drZguKjQPJZ9fXxbXX7SvV-mKjfJdGBVxiUTH2QCf4ywL3MfwZXRrUIYyxm3ZVSFkpeFUxmChYKDP9S4quefFSUHNwak5JzVuqJbip5XRp8aH_73wTfwIRE5kT</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Artigau, Étienne</creator><creator>Cadieux, Charles</creator><creator>Cook, Neil J.</creator><creator>Doyon, René</creator><creator>Dauplaise, Laurie</creator><creator>Arnold, Luc</creator><creator>Cadieux, Maya</creator><creator>Donati, Jean-François</creator><creator>Cristofari, Paul</creator><creator>Delfosse, Xavier</creator><creator>Fouqué, Pascal</creator><creator>Moutou, Claire</creator><creator>Larue, Pierre</creator><creator>Allart, Romain</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-1139-3502</orcidid><orcidid>https://orcid.org/0000-0002-1199-9759</orcidid><orcidid>https://orcid.org/0000-0002-0111-1234</orcidid><orcidid>https://orcid.org/0000-0001-5541-2887</orcidid><orcidid>https://orcid.org/0000-0002-1436-7351</orcidid><orcidid>https://orcid.org/0000-0003-4019-0630</orcidid><orcidid>https://orcid.org/0000-0002-2842-3924</orcidid><orcidid>https://orcid.org/0000-0001-9291-5555</orcidid><orcidid>https://orcid.org/0000-0001-5099-7978</orcidid><orcidid>https://orcid.org/0000-0001-5485-4675</orcidid><orcidid>https://orcid.org/0000-0003-4166-4121</orcidid><orcidid>https://orcid.org/0009-0004-2993-7849</orcidid><orcidid>https://orcid.org/0000-0003-3506-5667</orcidid></search><sort><creationdate>20241201</creationdate><title>Measuring Sub-Kelvin Variations in Stellar Temperature with High-resolution Spectroscopy</title><author>Artigau, Étienne ; Cadieux, Charles ; Cook, Neil J. ; Doyon, René ; Dauplaise, Laurie ; Arnold, Luc ; Cadieux, Maya ; Donati, Jean-François ; Cristofari, Paul ; Delfosse, Xavier ; Fouqué, Pascal ; Moutou, Claire ; Larue, Pierre ; Allart, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-af1fb80c28d3dd3f1e66cd2c3d06ad9d33881605c91e26c0b3452f71738ccda93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cool stars</topic><topic>Coronal emission lines</topic><topic>Emission lines</topic><topic>Emissions</topic><topic>European Southern Observatory</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>High resolution</topic><topic>High resolution spectroscopy</topic><topic>Infrared signatures</topic><topic>Infrared stars</topic><topic>Infrared telescopes</topic><topic>Jupiter</topic><topic>Planetary rotation</topic><topic>Radial velocity</topic><topic>Sciences of the Universe</topic><topic>Spectrographs</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopic observation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stars</topic><topic>Stellar activity</topic><topic>Stellar coronas</topic><topic>Stellar effective temperatures</topic><topic>Stellar temperature</topic><topic>Temperature effects</topic><topic>Temperature variations</topic><topic>Time series analysis</topic><topic>Transit</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artigau, Étienne</creatorcontrib><creatorcontrib>Cadieux, Charles</creatorcontrib><creatorcontrib>Cook, Neil J.</creatorcontrib><creatorcontrib>Doyon, René</creatorcontrib><creatorcontrib>Dauplaise, Laurie</creatorcontrib><creatorcontrib>Arnold, Luc</creatorcontrib><creatorcontrib>Cadieux, Maya</creatorcontrib><creatorcontrib>Donati, Jean-François</creatorcontrib><creatorcontrib>Cristofari, Paul</creatorcontrib><creatorcontrib>Delfosse, Xavier</creatorcontrib><creatorcontrib>Fouqué, Pascal</creatorcontrib><creatorcontrib>Moutou, Claire</creatorcontrib><creatorcontrib>Larue, Pierre</creatorcontrib><creatorcontrib>Allart, Romain</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astronomical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artigau, Étienne</au><au>Cadieux, Charles</au><au>Cook, Neil J.</au><au>Doyon, René</au><au>Dauplaise, Laurie</au><au>Arnold, Luc</au><au>Cadieux, Maya</au><au>Donati, Jean-François</au><au>Cristofari, Paul</au><au>Delfosse, Xavier</au><au>Fouqué, Pascal</au><au>Moutou, Claire</au><au>Larue, Pierre</au><au>Allart, Romain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Sub-Kelvin Variations in Stellar Temperature with High-resolution Spectroscopy</atitle><jtitle>The Astronomical Journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>168</volume><issue>6</issue><spage>252</spage><pages>252-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>The detection of stellar variability often relies on the measurement of selected activity indicators, such as coronal emission lines and nonthermal emissions. On the flip side, the effective stellar temperature is normally seen as one of the key fundamental parameters (with mass and radius) to understanding the basic physical nature of a star and its relation with its environment (e.g., planetary instellation). We present a novel approach for measuring disk-averaged temperature variations to sub-Kelvin accuracy inspired by algorithms developed for precision radial velocity (pRV). This framework uses the entire content of the spectrum, not just preidentified lines, and can be applied to existing data obtained with high-resolution spectrographs. We demonstrate the framework by recovering the known rotation periods and temperature modulation of Barnard star and AU Mic in data sets obtained in the infrared with SPIRou at CHFT and at optical wavelengths on ϵ Eridani with HARPS at ESO 3.6 m telescope. We use observations of the transiting hot Jupiter HD189733b, obtained with SPIRou, to show that this method can unveil the minute temperature variation signature expected during the transit event, an effect analogous to the Rossiter–McLaughlin effect but in temperature space. This method is a powerful new tool for characterizing stellar activity, and in particular temperature and magnetic features at the surfaces of cool stars, affecting both pRV and transit spectroscopic observations. We demonstrate this method in the context of high-resolution spectroscopy but it could be used at lower resolution.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/ad7b30</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0005-1139-3502</orcidid><orcidid>https://orcid.org/0000-0002-1199-9759</orcidid><orcidid>https://orcid.org/0000-0002-0111-1234</orcidid><orcidid>https://orcid.org/0000-0001-5541-2887</orcidid><orcidid>https://orcid.org/0000-0002-1436-7351</orcidid><orcidid>https://orcid.org/0000-0003-4019-0630</orcidid><orcidid>https://orcid.org/0000-0002-2842-3924</orcidid><orcidid>https://orcid.org/0000-0001-9291-5555</orcidid><orcidid>https://orcid.org/0000-0001-5099-7978</orcidid><orcidid>https://orcid.org/0000-0001-5485-4675</orcidid><orcidid>https://orcid.org/0000-0003-4166-4121</orcidid><orcidid>https://orcid.org/0009-0004-2993-7849</orcidid><orcidid>https://orcid.org/0000-0003-3506-5667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical Journal, 2024-12, Vol.168 (6), p.252 |
issn | 0004-6256 1538-3881 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_3881_ad7b30 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection |
subjects | Algorithms Cool stars Coronal emission lines Emission lines Emissions European Southern Observatory Extrasolar planets Gas giant planets High resolution High resolution spectroscopy Infrared signatures Infrared stars Infrared telescopes Jupiter Planetary rotation Radial velocity Sciences of the Universe Spectrographs Spectroscopic analysis Spectroscopic observation Spectroscopy Spectrum analysis Stars Stellar activity Stellar coronas Stellar effective temperatures Stellar temperature Temperature effects Temperature variations Time series analysis Transit Wavelengths |
title | Measuring Sub-Kelvin Variations in Stellar Temperature with High-resolution Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Sub-Kelvin%20Variations%20in%20Stellar%20Temperature%20with%20High-resolution%20Spectroscopy&rft.jtitle=The%20Astronomical%20Journal&rft.au=Artigau,%20%C3%89tienne&rft.date=2024-12-01&rft.volume=168&rft.issue=6&rft.spage=252&rft.pages=252-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/ad7b30&rft_dat=%3Cproquest_iop_j%3E3127649920%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127649920&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e3bc040c860747d88af1b2d513fe0849&rfr_iscdi=true |