Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O
Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal obs...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2023-09, Vol.166 (3), p.129 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 129 |
container_title | The Astronomical journal |
container_volume | 166 |
creator | Latouf, Natasha Mandell, Avi M. Villanueva, Geronimo L. Moore, Michael Dane Susemiehl, Nicholas Kofman, Vincent Himes, Michael D. |
description | Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O. |
doi_str_mv | 10.3847/1538-3881/acebc3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_acebc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8806628e7e0245cca9f845bd753c898c</doaj_id><sourcerecordid>2857439852</sourcerecordid><originalsourceid>FETCH-LOGICAL-d357t-5e765ef9399fd398786efed2bb25a727d70e109a9dfb8eca1b1782025fe719da3</originalsourceid><addsrcrecordid>eNptkU9rGzEQxZfSQt209x4F7aGFrKM_q5V0tI2TGEINSXMW2tXIkVmvttI61J-nX7RytrSXgmDEzI_Hm3lF8ZHgOZOVuCKcyZJJSa5MC03LXhWzv63XxQxjXJU15fXb4l1Ke4wJkbiaFb-W5gTJmx4tetOdkk_IhYju4RBGQEsfkt_1ZjxGQBsL_eidb83oQ4_yg59hbeL4lNCX5eJ-uVl_naPNHD0m3-_QTfS2bEwCi75BGnN5MIehO498j1Yhht7sohmeTmjbJIjPk-yDPxy7l-_k5JZu3xdvnOkSfPhTL4rH6_X31W15t73ZrBZ3pWVcjCUHUXNwiinlLFNSyBocWNo0lBtBhRUYCFZGWddIaA1piJAUU-5AEGUNuyg2k64NZq-H6A8mnnQwXr80QtzpvK1vO9BS4rqmEgRgWvG2NcrJijdWcNZKJdus9WnSGmL4ccz76304xnzipKnkosr-OM3U5UT5MPwDCNbnSPU5P33OT0-RZvzzf_BsjdS1ZppQpQfr2G8rq6Iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857439852</pqid></control><display><type>article</type><title>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Latouf, Natasha ; Mandell, Avi M. ; Villanueva, Geronimo L. ; Moore, Michael Dane ; Susemiehl, Nicholas ; Kofman, Vincent ; Himes, Michael D.</creator><creatorcontrib>Latouf, Natasha ; Mandell, Avi M. ; Villanueva, Geronimo L. ; Moore, Michael Dane ; Susemiehl, Nicholas ; Kofman, Vincent ; Himes, Michael D.</creatorcontrib><description>Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/acebc3</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Albedo ; Astrochemistry ; Astronomy ; Atmosphere ; Bayesian analysis ; Coronagraphs ; Design optimization ; Earth ; Exoplanet atmospheres ; Exoplanets ; Extrasolar planets ; Habitability ; Planetary atmospheres ; Sampling ; Signal to noise ratio</subject><ispartof>The Astronomical journal, 2023-09, Vol.166 (3), p.129</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8119-3355 ; 0000-0002-9338-8600 ; 0000-0002-2662-5776 ; 0000-0001-8079-1882 ; 0000-0002-5060-1993 ; 0000-0001-7912-6519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/acebc3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Latouf, Natasha</creatorcontrib><creatorcontrib>Mandell, Avi M.</creatorcontrib><creatorcontrib>Villanueva, Geronimo L.</creatorcontrib><creatorcontrib>Moore, Michael Dane</creatorcontrib><creatorcontrib>Susemiehl, Nicholas</creatorcontrib><creatorcontrib>Kofman, Vincent</creatorcontrib><creatorcontrib>Himes, Michael D.</creatorcontrib><title>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O.</description><subject>Albedo</subject><subject>Astrochemistry</subject><subject>Astronomy</subject><subject>Atmosphere</subject><subject>Bayesian analysis</subject><subject>Coronagraphs</subject><subject>Design optimization</subject><subject>Earth</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>Habitability</subject><subject>Planetary atmospheres</subject><subject>Sampling</subject><subject>Signal to noise ratio</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNptkU9rGzEQxZfSQt209x4F7aGFrKM_q5V0tI2TGEINSXMW2tXIkVmvttI61J-nX7RytrSXgmDEzI_Hm3lF8ZHgOZOVuCKcyZJJSa5MC03LXhWzv63XxQxjXJU15fXb4l1Ke4wJkbiaFb-W5gTJmx4tetOdkk_IhYju4RBGQEsfkt_1ZjxGQBsL_eidb83oQ4_yg59hbeL4lNCX5eJ-uVl_naPNHD0m3-_QTfS2bEwCi75BGnN5MIehO498j1Yhht7sohmeTmjbJIjPk-yDPxy7l-_k5JZu3xdvnOkSfPhTL4rH6_X31W15t73ZrBZ3pWVcjCUHUXNwiinlLFNSyBocWNo0lBtBhRUYCFZGWddIaA1piJAUU-5AEGUNuyg2k64NZq-H6A8mnnQwXr80QtzpvK1vO9BS4rqmEgRgWvG2NcrJijdWcNZKJdus9WnSGmL4ccz76304xnzipKnkosr-OM3U5UT5MPwDCNbnSPU5P33OT0-RZvzzf_BsjdS1ZppQpQfr2G8rq6Iw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Latouf, Natasha</creator><creator>Mandell, Avi M.</creator><creator>Villanueva, Geronimo L.</creator><creator>Moore, Michael Dane</creator><creator>Susemiehl, Nicholas</creator><creator>Kofman, Vincent</creator><creator>Himes, Michael D.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8119-3355</orcidid><orcidid>https://orcid.org/0000-0002-9338-8600</orcidid><orcidid>https://orcid.org/0000-0002-2662-5776</orcidid><orcidid>https://orcid.org/0000-0001-8079-1882</orcidid><orcidid>https://orcid.org/0000-0002-5060-1993</orcidid><orcidid>https://orcid.org/0000-0001-7912-6519</orcidid></search><sort><creationdate>20230901</creationdate><title>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</title><author>Latouf, Natasha ; Mandell, Avi M. ; Villanueva, Geronimo L. ; Moore, Michael Dane ; Susemiehl, Nicholas ; Kofman, Vincent ; Himes, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d357t-5e765ef9399fd398786efed2bb25a727d70e109a9dfb8eca1b1782025fe719da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Albedo</topic><topic>Astrochemistry</topic><topic>Astronomy</topic><topic>Atmosphere</topic><topic>Bayesian analysis</topic><topic>Coronagraphs</topic><topic>Design optimization</topic><topic>Earth</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>Habitability</topic><topic>Planetary atmospheres</topic><topic>Sampling</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latouf, Natasha</creatorcontrib><creatorcontrib>Mandell, Avi M.</creatorcontrib><creatorcontrib>Villanueva, Geronimo L.</creatorcontrib><creatorcontrib>Moore, Michael Dane</creatorcontrib><creatorcontrib>Susemiehl, Nicholas</creatorcontrib><creatorcontrib>Kofman, Vincent</creatorcontrib><creatorcontrib>Himes, Michael D.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latouf, Natasha</au><au>Mandell, Avi M.</au><au>Villanueva, Geronimo L.</au><au>Moore, Michael Dane</au><au>Susemiehl, Nicholas</au><au>Kofman, Vincent</au><au>Himes, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>166</volume><issue>3</issue><spage>129</spage><pages>129-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/acebc3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8119-3355</orcidid><orcidid>https://orcid.org/0000-0002-9338-8600</orcidid><orcidid>https://orcid.org/0000-0002-2662-5776</orcidid><orcidid>https://orcid.org/0000-0001-8079-1882</orcidid><orcidid>https://orcid.org/0000-0002-5060-1993</orcidid><orcidid>https://orcid.org/0000-0001-7912-6519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2023-09, Vol.166 (3), p.129 |
issn | 0004-6256 1538-3881 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_3881_acebc3 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Albedo Astrochemistry Astronomy Atmosphere Bayesian analysis Coronagraphs Design optimization Earth Exoplanet atmospheres Exoplanets Extrasolar planets Habitability Planetary atmospheres Sampling Signal to noise ratio |
title | Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Analysis%20for%20Remote%20Biosignature%20Identification%20on%20exoEarths%20(BARBIE).%20I.%20Using%20Grid-based%20Nested%20Sampling%20in%20Coronagraphy%20Observation%20Simulations%20for%20H2O&rft.jtitle=The%20Astronomical%20journal&rft.au=Latouf,%20Natasha&rft.date=2023-09-01&rft.volume=166&rft.issue=3&rft.spage=129&rft.pages=129-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/acebc3&rft_dat=%3Cproquest_iop_j%3E2857439852%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857439852&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8806628e7e0245cca9f845bd753c898c&rfr_iscdi=true |