Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O

Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal obs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2023-09, Vol.166 (3), p.129
Hauptverfasser: Latouf, Natasha, Mandell, Avi M., Villanueva, Geronimo L., Moore, Michael Dane, Susemiehl, Nicholas, Kofman, Vincent, Himes, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 129
container_title The Astronomical journal
container_volume 166
creator Latouf, Natasha
Mandell, Avi M.
Villanueva, Geronimo L.
Moore, Michael Dane
Susemiehl, Nicholas
Kofman, Vincent
Himes, Michael D.
description Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O.
doi_str_mv 10.3847/1538-3881/acebc3
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_acebc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8806628e7e0245cca9f845bd753c898c</doaj_id><sourcerecordid>2857439852</sourcerecordid><originalsourceid>FETCH-LOGICAL-d357t-5e765ef9399fd398786efed2bb25a727d70e109a9dfb8eca1b1782025fe719da3</originalsourceid><addsrcrecordid>eNptkU9rGzEQxZfSQt209x4F7aGFrKM_q5V0tI2TGEINSXMW2tXIkVmvttI61J-nX7RytrSXgmDEzI_Hm3lF8ZHgOZOVuCKcyZJJSa5MC03LXhWzv63XxQxjXJU15fXb4l1Ke4wJkbiaFb-W5gTJmx4tetOdkk_IhYju4RBGQEsfkt_1ZjxGQBsL_eidb83oQ4_yg59hbeL4lNCX5eJ-uVl_naPNHD0m3-_QTfS2bEwCi75BGnN5MIehO498j1Yhht7sohmeTmjbJIjPk-yDPxy7l-_k5JZu3xdvnOkSfPhTL4rH6_X31W15t73ZrBZ3pWVcjCUHUXNwiinlLFNSyBocWNo0lBtBhRUYCFZGWddIaA1piJAUU-5AEGUNuyg2k64NZq-H6A8mnnQwXr80QtzpvK1vO9BS4rqmEgRgWvG2NcrJijdWcNZKJdus9WnSGmL4ccz76304xnzipKnkosr-OM3U5UT5MPwDCNbnSPU5P33OT0-RZvzzf_BsjdS1ZppQpQfr2G8rq6Iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857439852</pqid></control><display><type>article</type><title>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Latouf, Natasha ; Mandell, Avi M. ; Villanueva, Geronimo L. ; Moore, Michael Dane ; Susemiehl, Nicholas ; Kofman, Vincent ; Himes, Michael D.</creator><creatorcontrib>Latouf, Natasha ; Mandell, Avi M. ; Villanueva, Geronimo L. ; Moore, Michael Dane ; Susemiehl, Nicholas ; Kofman, Vincent ; Himes, Michael D.</creatorcontrib><description>Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/acebc3</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Albedo ; Astrochemistry ; Astronomy ; Atmosphere ; Bayesian analysis ; Coronagraphs ; Design optimization ; Earth ; Exoplanet atmospheres ; Exoplanets ; Extrasolar planets ; Habitability ; Planetary atmospheres ; Sampling ; Signal to noise ratio</subject><ispartof>The Astronomical journal, 2023-09, Vol.166 (3), p.129</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8119-3355 ; 0000-0002-9338-8600 ; 0000-0002-2662-5776 ; 0000-0001-8079-1882 ; 0000-0002-5060-1993 ; 0000-0001-7912-6519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/acebc3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Latouf, Natasha</creatorcontrib><creatorcontrib>Mandell, Avi M.</creatorcontrib><creatorcontrib>Villanueva, Geronimo L.</creatorcontrib><creatorcontrib>Moore, Michael Dane</creatorcontrib><creatorcontrib>Susemiehl, Nicholas</creatorcontrib><creatorcontrib>Kofman, Vincent</creatorcontrib><creatorcontrib>Himes, Michael D.</creatorcontrib><title>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O.</description><subject>Albedo</subject><subject>Astrochemistry</subject><subject>Astronomy</subject><subject>Atmosphere</subject><subject>Bayesian analysis</subject><subject>Coronagraphs</subject><subject>Design optimization</subject><subject>Earth</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>Habitability</subject><subject>Planetary atmospheres</subject><subject>Sampling</subject><subject>Signal to noise ratio</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNptkU9rGzEQxZfSQt209x4F7aGFrKM_q5V0tI2TGEINSXMW2tXIkVmvttI61J-nX7RytrSXgmDEzI_Hm3lF8ZHgOZOVuCKcyZJJSa5MC03LXhWzv63XxQxjXJU15fXb4l1Ke4wJkbiaFb-W5gTJmx4tetOdkk_IhYju4RBGQEsfkt_1ZjxGQBsL_eidb83oQ4_yg59hbeL4lNCX5eJ-uVl_naPNHD0m3-_QTfS2bEwCi75BGnN5MIehO498j1Yhht7sohmeTmjbJIjPk-yDPxy7l-_k5JZu3xdvnOkSfPhTL4rH6_X31W15t73ZrBZ3pWVcjCUHUXNwiinlLFNSyBocWNo0lBtBhRUYCFZGWddIaA1piJAUU-5AEGUNuyg2k64NZq-H6A8mnnQwXr80QtzpvK1vO9BS4rqmEgRgWvG2NcrJijdWcNZKJdus9WnSGmL4ccz76304xnzipKnkosr-OM3U5UT5MPwDCNbnSPU5P33OT0-RZvzzf_BsjdS1ZppQpQfr2G8rq6Iw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Latouf, Natasha</creator><creator>Mandell, Avi M.</creator><creator>Villanueva, Geronimo L.</creator><creator>Moore, Michael Dane</creator><creator>Susemiehl, Nicholas</creator><creator>Kofman, Vincent</creator><creator>Himes, Michael D.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8119-3355</orcidid><orcidid>https://orcid.org/0000-0002-9338-8600</orcidid><orcidid>https://orcid.org/0000-0002-2662-5776</orcidid><orcidid>https://orcid.org/0000-0001-8079-1882</orcidid><orcidid>https://orcid.org/0000-0002-5060-1993</orcidid><orcidid>https://orcid.org/0000-0001-7912-6519</orcidid></search><sort><creationdate>20230901</creationdate><title>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</title><author>Latouf, Natasha ; Mandell, Avi M. ; Villanueva, Geronimo L. ; Moore, Michael Dane ; Susemiehl, Nicholas ; Kofman, Vincent ; Himes, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d357t-5e765ef9399fd398786efed2bb25a727d70e109a9dfb8eca1b1782025fe719da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Albedo</topic><topic>Astrochemistry</topic><topic>Astronomy</topic><topic>Atmosphere</topic><topic>Bayesian analysis</topic><topic>Coronagraphs</topic><topic>Design optimization</topic><topic>Earth</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>Habitability</topic><topic>Planetary atmospheres</topic><topic>Sampling</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latouf, Natasha</creatorcontrib><creatorcontrib>Mandell, Avi M.</creatorcontrib><creatorcontrib>Villanueva, Geronimo L.</creatorcontrib><creatorcontrib>Moore, Michael Dane</creatorcontrib><creatorcontrib>Susemiehl, Nicholas</creatorcontrib><creatorcontrib>Kofman, Vincent</creatorcontrib><creatorcontrib>Himes, Michael D.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latouf, Natasha</au><au>Mandell, Avi M.</au><au>Villanueva, Geronimo L.</au><au>Moore, Michael Dane</au><au>Susemiehl, Nicholas</au><au>Kofman, Vincent</au><au>Himes, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>166</volume><issue>3</issue><spage>129</spage><pages>129-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>Detecting H2O in exoplanet atmospheres is the first step on the path to determining planet habitability. Coronagraphic design currently limits the observing strategy used to detect H2O, requiring the choice of specific bandpasses to optimize abundance constraints. In order to examine the optimal observing strategy for initial characterization of habitable planets using coronagraph-based direct imaging, we quantify the detectability of H2O as a function of signal-to-noise ratio (S/N) and molecular abundance across 25 bandpasses in the visible wavelength range (0.5–1 μm). We use a preconstructed grid consisting of 1.4 million geometric albedo spectra across a range of abundance and pressure, and interpolate to produce forward models for an efficient nested sampling routine, PSGnest. We first test the detectability of H2O in atmospheres that mimic a modern-Earth twin, and then expand to examine a wider range of H2O abundances; for each abundance value, we constrain the optimal 20% bandpasses based on the effective S/N of the data. We present our findings of H2O detectability as functions of S/N, wavelength, and abundance, and discuss how to use these results for optimizing future coronographic instrument design. We find that there are specific points in wavelength where H2O can be detected down to 0.74 μm with moderate-S/N data for abundances at the upper end of Earth’s presumed historical values, while at 0.9 μm, detectability is possible with low-S/N data at modern Earth abundances of H2O.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/acebc3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8119-3355</orcidid><orcidid>https://orcid.org/0000-0002-9338-8600</orcidid><orcidid>https://orcid.org/0000-0002-2662-5776</orcidid><orcidid>https://orcid.org/0000-0001-8079-1882</orcidid><orcidid>https://orcid.org/0000-0002-5060-1993</orcidid><orcidid>https://orcid.org/0000-0001-7912-6519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2023-09, Vol.166 (3), p.129
issn 0004-6256
1538-3881
language eng
recordid cdi_iop_journals_10_3847_1538_3881_acebc3
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Albedo
Astrochemistry
Astronomy
Atmosphere
Bayesian analysis
Coronagraphs
Design optimization
Earth
Exoplanet atmospheres
Exoplanets
Extrasolar planets
Habitability
Planetary atmospheres
Sampling
Signal to noise ratio
title Bayesian Analysis for Remote Biosignature Identification on exoEarths (BARBIE). I. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for H2O
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Analysis%20for%20Remote%20Biosignature%20Identification%20on%20exoEarths%20(BARBIE).%20I.%20Using%20Grid-based%20Nested%20Sampling%20in%20Coronagraphy%20Observation%20Simulations%20for%20H2O&rft.jtitle=The%20Astronomical%20journal&rft.au=Latouf,%20Natasha&rft.date=2023-09-01&rft.volume=166&rft.issue=3&rft.spage=129&rft.pages=129-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/acebc3&rft_dat=%3Cproquest_iop_j%3E2857439852%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857439852&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8806628e7e0245cca9f845bd753c898c&rfr_iscdi=true