Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2018-05, Vol.155 (5), p.205
Hauptverfasser: Hsu, Danley C., Ford, Eric B., Ragozzine, Darin, Morehead, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 205
container_title The Astronomical journal
container_volume 155
creator Hsu, Danley C.
Ford, Eric B.
Ragozzine, Darin
Morehead, Robert C.
description We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1-Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (Rp < 1.25 R⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.
doi_str_mv 10.3847/1538-3881/aab9a8
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_aab9a8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365684014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-eca369c4fc5f1900b4c472938df10831be0bc2ad9cbd0cb70d5907422e2079163</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQa8WnfSpG16XBc_FhdWxD2HNE20y7apSSv2vzeloidPAzPvvXn8ELokcEM5yxYkoTyinJOFlEUu-RGa_a6O0QwAWJTGSXqKzrzfAxDCgc1Qua5bZz-r5g137xovleqdVAO2Bj8fZKM7vB1XTjdK4xfZaY-NszV-0u1BO7zzo3PZhoyvqg5nfCsH7SvZ4JWt276TXWWbc3Ri5MHri585R7v7u9fVY7TZPqxXy02kKPAu0krSNFfMqMSQHKBgimVxTnlpCHBKCg2FimWZq6IEVWRQJjlkLI51DFlOUjpHV1NuqPPRa9-Jve1dE16KmKZJyhkQFlQwqZSz3jttROtCdzcIAmJkKUZwYgQnJpbBcj1ZKtv-Zf4r_wbmZ3ZV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365684014</pqid></control><display><type>article</type><title>Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation</title><source>IOP Publishing Free Content</source><creator>Hsu, Danley C. ; Ford, Eric B. ; Ragozzine, Darin ; Morehead, Robert C.</creator><creatorcontrib>Hsu, Danley C. ; Ford, Eric B. ; Ragozzine, Darin ; Morehead, Robert C.</creatorcontrib><description>We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1-Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (Rp &lt; 1.25 R⊕) at larger orbital periods (P &gt; 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/aab9a8</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Algorithms ; Astronomy ; Bayesian analysis ; Circumstellar habitable zone ; Extrasolar planets ; False alarms ; Importance sampling ; methods: data analysis ; methods: statistical ; Orbits ; planetary systems ; Planets ; Populations ; stars: statistics ; Two dimensional models ; Uncertainty</subject><ispartof>The Astronomical journal, 2018-05, Vol.155 (5), p.205</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-eca369c4fc5f1900b4c472938df10831be0bc2ad9cbd0cb70d5907422e2079163</citedby><cites>FETCH-LOGICAL-c308t-eca369c4fc5f1900b4c472938df10831be0bc2ad9cbd0cb70d5907422e2079163</cites><orcidid>0000-0003-3447-1890 ; 0000-0002-2740-3673 ; 0000-0003-1080-9770 ; 0000-0001-6545-639X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aab9a8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aab9a8$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Hsu, Danley C.</creatorcontrib><creatorcontrib>Ford, Eric B.</creatorcontrib><creatorcontrib>Ragozzine, Darin</creatorcontrib><creatorcontrib>Morehead, Robert C.</creatorcontrib><title>Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1-Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (Rp &lt; 1.25 R⊕) at larger orbital periods (P &gt; 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.</description><subject>Algorithms</subject><subject>Astronomy</subject><subject>Bayesian analysis</subject><subject>Circumstellar habitable zone</subject><subject>Extrasolar planets</subject><subject>False alarms</subject><subject>Importance sampling</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>Orbits</subject><subject>planetary systems</subject><subject>Planets</subject><subject>Populations</subject><subject>stars: statistics</subject><subject>Two dimensional models</subject><subject>Uncertainty</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQa8WnfSpG16XBc_FhdWxD2HNE20y7apSSv2vzeloidPAzPvvXn8ELokcEM5yxYkoTyinJOFlEUu-RGa_a6O0QwAWJTGSXqKzrzfAxDCgc1Qua5bZz-r5g137xovleqdVAO2Bj8fZKM7vB1XTjdK4xfZaY-NszV-0u1BO7zzo3PZhoyvqg5nfCsH7SvZ4JWt276TXWWbc3Ri5MHri585R7v7u9fVY7TZPqxXy02kKPAu0krSNFfMqMSQHKBgimVxTnlpCHBKCg2FimWZq6IEVWRQJjlkLI51DFlOUjpHV1NuqPPRa9-Jve1dE16KmKZJyhkQFlQwqZSz3jttROtCdzcIAmJkKUZwYgQnJpbBcj1ZKtv-Zf4r_wbmZ3ZV</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Hsu, Danley C.</creator><creator>Ford, Eric B.</creator><creator>Ragozzine, Darin</creator><creator>Morehead, Robert C.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3447-1890</orcidid><orcidid>https://orcid.org/0000-0002-2740-3673</orcidid><orcidid>https://orcid.org/0000-0003-1080-9770</orcidid><orcidid>https://orcid.org/0000-0001-6545-639X</orcidid></search><sort><creationdate>20180501</creationdate><title>Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation</title><author>Hsu, Danley C. ; Ford, Eric B. ; Ragozzine, Darin ; Morehead, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-eca369c4fc5f1900b4c472938df10831be0bc2ad9cbd0cb70d5907422e2079163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Astronomy</topic><topic>Bayesian analysis</topic><topic>Circumstellar habitable zone</topic><topic>Extrasolar planets</topic><topic>False alarms</topic><topic>Importance sampling</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>Orbits</topic><topic>planetary systems</topic><topic>Planets</topic><topic>Populations</topic><topic>stars: statistics</topic><topic>Two dimensional models</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Danley C.</creatorcontrib><creatorcontrib>Ford, Eric B.</creatorcontrib><creatorcontrib>Ragozzine, Darin</creatorcontrib><creatorcontrib>Morehead, Robert C.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsu, Danley C.</au><au>Ford, Eric B.</au><au>Ragozzine, Darin</au><au>Morehead, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>155</volume><issue>5</issue><spage>205</spage><pages>205-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1-Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (Rp &lt; 1.25 R⊕) at larger orbital periods (P &gt; 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/aab9a8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3447-1890</orcidid><orcidid>https://orcid.org/0000-0002-2740-3673</orcidid><orcidid>https://orcid.org/0000-0003-1080-9770</orcidid><orcidid>https://orcid.org/0000-0001-6545-639X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2018-05, Vol.155 (5), p.205
issn 0004-6256
1538-3881
language eng
recordid cdi_iop_journals_10_3847_1538_3881_aab9a8
source IOP Publishing Free Content
subjects Algorithms
Astronomy
Bayesian analysis
Circumstellar habitable zone
Extrasolar planets
False alarms
Importance sampling
methods: data analysis
methods: statistical
Orbits
planetary systems
Planets
Populations
stars: statistics
Two dimensional models
Uncertainty
title Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Accuracy%20of%20Planet%20Occurrence%20Rates%20from%20Kepler%20Using%20Approximate%20Bayesian%20Computation&rft.jtitle=The%20Astronomical%20journal&rft.au=Hsu,%20Danley%20C.&rft.date=2018-05-01&rft.volume=155&rft.issue=5&rft.spage=205&rft.pages=205-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/aab9a8&rft_dat=%3Cproquest_O3W%3E2365684014%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365684014&rft_id=info:pmid/&rfr_iscdi=true