Simulating the Refractive Index Structure Constant in the Surface Layer at Antarctica with a Mesoscale Model

In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (Cn2) above Taishan Station in Antarctica. First, we use the measured meteorological paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2018-01, Vol.155 (1), p.37
Hauptverfasser: Qing, Chun, Wu, Xiaoqing, Li, Xuebin, Tian, Qiguo, Liu, Dong, Rao, Ruizhong, Zhu, Wenyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 37
container_title The Astronomical journal
container_volume 155
creator Qing, Chun
Wu, Xiaoqing
Li, Xuebin
Tian, Qiguo
Liu, Dong
Rao, Ruizhong
Zhu, Wenyue
description In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (Cn2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate Cn2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate Cn2 using the bulk aerodynamic method. Finally, the corresponding Cn2 values from the micro-thermometer are compared with the Cn2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators-the bias, root mean square error (RMSE), bias-corrected RMSE ( ), and correlation coefficient (Rxy)-in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, , and Rxy. The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.
doi_str_mv 10.3847/1538-3881/aa9e8f
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_aa9e8f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365684027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d813d18bae5d071032cb76d632ddfcacc454d9423cf3760102fd226fc6fd6e23</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb3Lge6NXYeyWS6LMVHoUWw3Q-387ApaRJnJmr_vakR3YirC4fvnAsfQteU3HKZ5mOacZlwKekYYGKlO0GDn-gUDQghaSJYJs7RRQg7QiiVJB2gclXs2xJiUb3guLX42ToPOhZvFs8rYz_wKvpWx9ZbPKurEKGKuKi-0FXrHWiLF3CwHkPE0yqC77oa8HsRtxjw0oY6aCgtXtbGlpfozEEZ7NX3HaL1_d169pgsnh7ms-ki0TyXMTGSckPlBmxmSE4JZ3qTCyM4M8Zp0DrNUjNJGdeO54JQwpxhTDgtnBGW8SEa9bONr19bG6La1a2vuo-KcZEJmRKWdxTpKe3rELx1qvHFHvxBUaKOStXRnzr6U73SrnLTV4q6-d38Bx_9gcOuIzNFFc9VYxz_BImihTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365684027</pqid></control><display><type>article</type><title>Simulating the Refractive Index Structure Constant in the Surface Layer at Antarctica with a Mesoscale Model</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Qing, Chun ; Wu, Xiaoqing ; Li, Xuebin ; Tian, Qiguo ; Liu, Dong ; Rao, Ruizhong ; Zhu, Wenyue</creator><creatorcontrib>Qing, Chun ; Wu, Xiaoqing ; Li, Xuebin ; Tian, Qiguo ; Liu, Dong ; Rao, Ruizhong ; Zhu, Wenyue</creatorcontrib><description>In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (Cn2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate Cn2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate Cn2 using the bulk aerodynamic method. Finally, the corresponding Cn2 values from the micro-thermometer are compared with the Cn2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators-the bias, root mean square error (RMSE), bias-corrected RMSE ( ), and correlation coefficient (Rxy)-in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, , and Rxy. The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/aa9e8f</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Aerodynamics ; Astronomy ; atmospheric effects ; Bias ; Computer simulation ; Contingency ; Correlation coefficient ; Correlation coefficients ; Error correction ; Mathematical models ; Meteorological parameters ; methods: data analysis ; methods: numerical ; Parameter estimation ; Refractive index ; Refractivity ; Root-mean-square errors ; site testing ; Surface boundary layer ; Surface layers ; turbulence ; Weather forecasting</subject><ispartof>The Astronomical journal, 2018-01, Vol.155 (1), p.37</ispartof><rights>2017. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Jan 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d813d18bae5d071032cb76d632ddfcacc454d9423cf3760102fd226fc6fd6e23</citedby><cites>FETCH-LOGICAL-c378t-d813d18bae5d071032cb76d632ddfcacc454d9423cf3760102fd226fc6fd6e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa9e8f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Qing, Chun</creatorcontrib><creatorcontrib>Wu, Xiaoqing</creatorcontrib><creatorcontrib>Li, Xuebin</creatorcontrib><creatorcontrib>Tian, Qiguo</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Rao, Ruizhong</creatorcontrib><creatorcontrib>Zhu, Wenyue</creatorcontrib><title>Simulating the Refractive Index Structure Constant in the Surface Layer at Antarctica with a Mesoscale Model</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (Cn2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate Cn2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate Cn2 using the bulk aerodynamic method. Finally, the corresponding Cn2 values from the micro-thermometer are compared with the Cn2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators-the bias, root mean square error (RMSE), bias-corrected RMSE ( ), and correlation coefficient (Rxy)-in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, , and Rxy. The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.</description><subject>Aerodynamics</subject><subject>Astronomy</subject><subject>atmospheric effects</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Contingency</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Error correction</subject><subject>Mathematical models</subject><subject>Meteorological parameters</subject><subject>methods: data analysis</subject><subject>methods: numerical</subject><subject>Parameter estimation</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Root-mean-square errors</subject><subject>site testing</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>turbulence</subject><subject>Weather forecasting</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kEtLw0AUhQdRsFb3Lge6NXYeyWS6LMVHoUWw3Q-387ApaRJnJmr_vakR3YirC4fvnAsfQteU3HKZ5mOacZlwKekYYGKlO0GDn-gUDQghaSJYJs7RRQg7QiiVJB2gclXs2xJiUb3guLX42ToPOhZvFs8rYz_wKvpWx9ZbPKurEKGKuKi-0FXrHWiLF3CwHkPE0yqC77oa8HsRtxjw0oY6aCgtXtbGlpfozEEZ7NX3HaL1_d169pgsnh7ms-ki0TyXMTGSckPlBmxmSE4JZ3qTCyM4M8Zp0DrNUjNJGdeO54JQwpxhTDgtnBGW8SEa9bONr19bG6La1a2vuo-KcZEJmRKWdxTpKe3rELx1qvHFHvxBUaKOStXRnzr6U73SrnLTV4q6-d38Bx_9gcOuIzNFFc9VYxz_BImihTM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Qing, Chun</creator><creator>Wu, Xiaoqing</creator><creator>Li, Xuebin</creator><creator>Tian, Qiguo</creator><creator>Liu, Dong</creator><creator>Rao, Ruizhong</creator><creator>Zhu, Wenyue</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Simulating the Refractive Index Structure Constant in the Surface Layer at Antarctica with a Mesoscale Model</title><author>Qing, Chun ; Wu, Xiaoqing ; Li, Xuebin ; Tian, Qiguo ; Liu, Dong ; Rao, Ruizhong ; Zhu, Wenyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d813d18bae5d071032cb76d632ddfcacc454d9423cf3760102fd226fc6fd6e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Astronomy</topic><topic>atmospheric effects</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Contingency</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Error correction</topic><topic>Mathematical models</topic><topic>Meteorological parameters</topic><topic>methods: data analysis</topic><topic>methods: numerical</topic><topic>Parameter estimation</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Root-mean-square errors</topic><topic>site testing</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>turbulence</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qing, Chun</creatorcontrib><creatorcontrib>Wu, Xiaoqing</creatorcontrib><creatorcontrib>Li, Xuebin</creatorcontrib><creatorcontrib>Tian, Qiguo</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Rao, Ruizhong</creatorcontrib><creatorcontrib>Zhu, Wenyue</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qing, Chun</au><au>Wu, Xiaoqing</au><au>Li, Xuebin</au><au>Tian, Qiguo</au><au>Liu, Dong</au><au>Rao, Ruizhong</au><au>Zhu, Wenyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating the Refractive Index Structure Constant in the Surface Layer at Antarctica with a Mesoscale Model</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>155</volume><issue>1</issue><spage>37</spage><pages>37-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (Cn2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate Cn2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate Cn2 using the bulk aerodynamic method. Finally, the corresponding Cn2 values from the micro-thermometer are compared with the Cn2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators-the bias, root mean square error (RMSE), bias-corrected RMSE ( ), and correlation coefficient (Rxy)-in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, , and Rxy. The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/aa9e8f</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2018-01, Vol.155 (1), p.37
issn 0004-6256
1538-3881
language eng
recordid cdi_iop_journals_10_3847_1538_3881_aa9e8f
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aerodynamics
Astronomy
atmospheric effects
Bias
Computer simulation
Contingency
Correlation coefficient
Correlation coefficients
Error correction
Mathematical models
Meteorological parameters
methods: data analysis
methods: numerical
Parameter estimation
Refractive index
Refractivity
Root-mean-square errors
site testing
Surface boundary layer
Surface layers
turbulence
Weather forecasting
title Simulating the Refractive Index Structure Constant in the Surface Layer at Antarctica with a Mesoscale Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20the%20Refractive%20Index%20Structure%20Constant%20in%20the%20Surface%20Layer%20at%20Antarctica%20with%20a%20Mesoscale%20Model&rft.jtitle=The%20Astronomical%20journal&rft.au=Qing,%20Chun&rft.date=2018-01-01&rft.volume=155&rft.issue=1&rft.spage=37&rft.pages=37-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/aa9e8f&rft_dat=%3Cproquest_iop_j%3E2365684027%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365684027&rft_id=info:pmid/&rfr_iscdi=true