Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series
The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2017-12, Vol.154 (6), p.220 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 220 |
container_title | The Astronomical journal |
container_volume | 154 |
creator | Foreman-Mackey, Daniel Agol, Eric Ambikasaran, Sivaram Angus, Ruth |
description | The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia. |
doi_str_mv | 10.3847/1538-3881/aa9332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_aa9332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365686916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwGv1uVHm6THMdwUFIXNg6fwNU00o2tq0iH-93ZU9OTpg5fnfT94ELqk5IarXM5owVXGlaIzgJJzdoQmv9ExmhBC8kywQpyis5S2hFCqSD5Br0tIPYa2xmsDDVSNxSvYp-Shxc8xGJsSfgy1bXz7hj99_47nXdd4A70PbcJ9wPPUx9CG3ZA1eON3Fq9t9DadoxMHTbIXP3eKXpa3m8Vd9vC0ul_MHzLDC9JnylXGsjwvgAlFi5JLqoSsKuIs1HXtauYIqxi1RuUlYbRwxilHpSxBcimBT9HVuNvF8LG3qdfbsI_t8FIzLgqhREnFQJGRMjGkFK3TXfQ7iF-aEn0QqA-29MGWHgUOleux4kP3t_kv_g0mbHEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365686916</pqid></control><display><type>article</type><title>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</title><source>IOP Publishing Free Content</source><creator>Foreman-Mackey, Daniel ; Agol, Eric ; Ambikasaran, Sivaram ; Angus, Ruth</creator><creatorcontrib>Foreman-Mackey, Daniel ; Agol, Eric ; Ambikasaran, Sivaram ; Angus, Ruth</creatorcontrib><description>The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/aa9332</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>asteroseismology ; Astronomical data ; Astronomical models ; Astronomy ; Celestial bodies ; Computer simulation ; Computing costs ; Covariance ; Data analysis ; Data points ; Datasets ; Extrasolar planets ; Gaussian process ; Harmonic oscillators ; methods: data analysis ; methods: statistical ; Planetary rotation ; planetary systems ; Probabilistic inference ; Probabilistic methods ; stars: rotation ; Stellar oscillations ; Stellar rotation ; Time domain analysis ; Time series ; Transit</subject><ispartof>The Astronomical journal, 2017-12, Vol.154 (6), p.220</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</citedby><cites>FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</cites><orcidid>0000-0003-4540-5661 ; 0000-0003-2978-6281 ; 0000-0002-0802-9145 ; 0000-0002-9328-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa9332/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa9332$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Foreman-Mackey, Daniel</creatorcontrib><creatorcontrib>Agol, Eric</creatorcontrib><creatorcontrib>Ambikasaran, Sivaram</creatorcontrib><creatorcontrib>Angus, Ruth</creatorcontrib><title>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.</description><subject>asteroseismology</subject><subject>Astronomical data</subject><subject>Astronomical models</subject><subject>Astronomy</subject><subject>Celestial bodies</subject><subject>Computer simulation</subject><subject>Computing costs</subject><subject>Covariance</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Datasets</subject><subject>Extrasolar planets</subject><subject>Gaussian process</subject><subject>Harmonic oscillators</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>Planetary rotation</subject><subject>planetary systems</subject><subject>Probabilistic inference</subject><subject>Probabilistic methods</subject><subject>stars: rotation</subject><subject>Stellar oscillations</subject><subject>Stellar rotation</subject><subject>Time domain analysis</subject><subject>Time series</subject><subject>Transit</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jwGv1uVHm6THMdwUFIXNg6fwNU00o2tq0iH-93ZU9OTpg5fnfT94ELqk5IarXM5owVXGlaIzgJJzdoQmv9ExmhBC8kywQpyis5S2hFCqSD5Br0tIPYa2xmsDDVSNxSvYp-Shxc8xGJsSfgy1bXz7hj99_47nXdd4A70PbcJ9wPPUx9CG3ZA1eON3Fq9t9DadoxMHTbIXP3eKXpa3m8Vd9vC0ul_MHzLDC9JnylXGsjwvgAlFi5JLqoSsKuIs1HXtauYIqxi1RuUlYbRwxilHpSxBcimBT9HVuNvF8LG3qdfbsI_t8FIzLgqhREnFQJGRMjGkFK3TXfQ7iF-aEn0QqA-29MGWHgUOleux4kP3t_kv_g0mbHEZ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Foreman-Mackey, Daniel</creator><creator>Agol, Eric</creator><creator>Ambikasaran, Sivaram</creator><creator>Angus, Ruth</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4540-5661</orcidid><orcidid>https://orcid.org/0000-0003-2978-6281</orcidid><orcidid>https://orcid.org/0000-0002-0802-9145</orcidid><orcidid>https://orcid.org/0000-0002-9328-5652</orcidid></search><sort><creationdate>20171201</creationdate><title>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</title><author>Foreman-Mackey, Daniel ; Agol, Eric ; Ambikasaran, Sivaram ; Angus, Ruth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>asteroseismology</topic><topic>Astronomical data</topic><topic>Astronomical models</topic><topic>Astronomy</topic><topic>Celestial bodies</topic><topic>Computer simulation</topic><topic>Computing costs</topic><topic>Covariance</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Datasets</topic><topic>Extrasolar planets</topic><topic>Gaussian process</topic><topic>Harmonic oscillators</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>Planetary rotation</topic><topic>planetary systems</topic><topic>Probabilistic inference</topic><topic>Probabilistic methods</topic><topic>stars: rotation</topic><topic>Stellar oscillations</topic><topic>Stellar rotation</topic><topic>Time domain analysis</topic><topic>Time series</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foreman-Mackey, Daniel</creatorcontrib><creatorcontrib>Agol, Eric</creatorcontrib><creatorcontrib>Ambikasaran, Sivaram</creatorcontrib><creatorcontrib>Angus, Ruth</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Foreman-Mackey, Daniel</au><au>Agol, Eric</au><au>Ambikasaran, Sivaram</au><au>Angus, Ruth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>154</volume><issue>6</issue><spage>220</spage><pages>220-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/aa9332</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4540-5661</orcidid><orcidid>https://orcid.org/0000-0003-2978-6281</orcidid><orcidid>https://orcid.org/0000-0002-0802-9145</orcidid><orcidid>https://orcid.org/0000-0002-9328-5652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2017-12, Vol.154 (6), p.220 |
issn | 0004-6256 1538-3881 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_3881_aa9332 |
source | IOP Publishing Free Content |
subjects | asteroseismology Astronomical data Astronomical models Astronomy Celestial bodies Computer simulation Computing costs Covariance Data analysis Data points Datasets Extrasolar planets Gaussian process Harmonic oscillators methods: data analysis methods: statistical Planetary rotation planetary systems Probabilistic inference Probabilistic methods stars: rotation Stellar oscillations Stellar rotation Time domain analysis Time series Transit |
title | Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Scalable%20Gaussian%20Process%20Modeling%20with%20Applications%20to%20Astronomical%20Time%20Series&rft.jtitle=The%20Astronomical%20journal&rft.au=Foreman-Mackey,%20Daniel&rft.date=2017-12-01&rft.volume=154&rft.issue=6&rft.spage=220&rft.pages=220-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/aa9332&rft_dat=%3Cproquest_O3W%3E2365686916%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365686916&rft_id=info:pmid/&rfr_iscdi=true |