Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series

The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2017-12, Vol.154 (6), p.220
Hauptverfasser: Foreman-Mackey, Daniel, Agol, Eric, Ambikasaran, Sivaram, Angus, Ruth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 220
container_title The Astronomical journal
container_volume 154
creator Foreman-Mackey, Daniel
Agol, Eric
Ambikasaran, Sivaram
Angus, Ruth
description The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.
doi_str_mv 10.3847/1538-3881/aa9332
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_aa9332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365686916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwGv1uVHm6THMdwUFIXNg6fwNU00o2tq0iH-93ZU9OTpg5fnfT94ELqk5IarXM5owVXGlaIzgJJzdoQmv9ExmhBC8kywQpyis5S2hFCqSD5Br0tIPYa2xmsDDVSNxSvYp-Shxc8xGJsSfgy1bXz7hj99_47nXdd4A70PbcJ9wPPUx9CG3ZA1eON3Fq9t9DadoxMHTbIXP3eKXpa3m8Vd9vC0ul_MHzLDC9JnylXGsjwvgAlFi5JLqoSsKuIs1HXtauYIqxi1RuUlYbRwxilHpSxBcimBT9HVuNvF8LG3qdfbsI_t8FIzLgqhREnFQJGRMjGkFK3TXfQ7iF-aEn0QqA-29MGWHgUOleux4kP3t_kv_g0mbHEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365686916</pqid></control><display><type>article</type><title>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</title><source>IOP Publishing Free Content</source><creator>Foreman-Mackey, Daniel ; Agol, Eric ; Ambikasaran, Sivaram ; Angus, Ruth</creator><creatorcontrib>Foreman-Mackey, Daniel ; Agol, Eric ; Ambikasaran, Sivaram ; Angus, Ruth</creatorcontrib><description>The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/aa9332</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>asteroseismology ; Astronomical data ; Astronomical models ; Astronomy ; Celestial bodies ; Computer simulation ; Computing costs ; Covariance ; Data analysis ; Data points ; Datasets ; Extrasolar planets ; Gaussian process ; Harmonic oscillators ; methods: data analysis ; methods: statistical ; Planetary rotation ; planetary systems ; Probabilistic inference ; Probabilistic methods ; stars: rotation ; Stellar oscillations ; Stellar rotation ; Time domain analysis ; Time series ; Transit</subject><ispartof>The Astronomical journal, 2017-12, Vol.154 (6), p.220</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</citedby><cites>FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</cites><orcidid>0000-0003-4540-5661 ; 0000-0003-2978-6281 ; 0000-0002-0802-9145 ; 0000-0002-9328-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa9332/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa9332$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Foreman-Mackey, Daniel</creatorcontrib><creatorcontrib>Agol, Eric</creatorcontrib><creatorcontrib>Ambikasaran, Sivaram</creatorcontrib><creatorcontrib>Angus, Ruth</creatorcontrib><title>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.</description><subject>asteroseismology</subject><subject>Astronomical data</subject><subject>Astronomical models</subject><subject>Astronomy</subject><subject>Celestial bodies</subject><subject>Computer simulation</subject><subject>Computing costs</subject><subject>Covariance</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Datasets</subject><subject>Extrasolar planets</subject><subject>Gaussian process</subject><subject>Harmonic oscillators</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>Planetary rotation</subject><subject>planetary systems</subject><subject>Probabilistic inference</subject><subject>Probabilistic methods</subject><subject>stars: rotation</subject><subject>Stellar oscillations</subject><subject>Stellar rotation</subject><subject>Time domain analysis</subject><subject>Time series</subject><subject>Transit</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jwGv1uVHm6THMdwUFIXNg6fwNU00o2tq0iH-93ZU9OTpg5fnfT94ELqk5IarXM5owVXGlaIzgJJzdoQmv9ExmhBC8kywQpyis5S2hFCqSD5Br0tIPYa2xmsDDVSNxSvYp-Shxc8xGJsSfgy1bXz7hj99_47nXdd4A70PbcJ9wPPUx9CG3ZA1eON3Fq9t9DadoxMHTbIXP3eKXpa3m8Vd9vC0ul_MHzLDC9JnylXGsjwvgAlFi5JLqoSsKuIs1HXtauYIqxi1RuUlYbRwxilHpSxBcimBT9HVuNvF8LG3qdfbsI_t8FIzLgqhREnFQJGRMjGkFK3TXfQ7iF-aEn0QqA-29MGWHgUOleux4kP3t_kv_g0mbHEZ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Foreman-Mackey, Daniel</creator><creator>Agol, Eric</creator><creator>Ambikasaran, Sivaram</creator><creator>Angus, Ruth</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4540-5661</orcidid><orcidid>https://orcid.org/0000-0003-2978-6281</orcidid><orcidid>https://orcid.org/0000-0002-0802-9145</orcidid><orcidid>https://orcid.org/0000-0002-9328-5652</orcidid></search><sort><creationdate>20171201</creationdate><title>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</title><author>Foreman-Mackey, Daniel ; Agol, Eric ; Ambikasaran, Sivaram ; Angus, Ruth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-8fbce2445a268159371867bb0feadddfd2f02b21ec8490215fcf8f1779a7377a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>asteroseismology</topic><topic>Astronomical data</topic><topic>Astronomical models</topic><topic>Astronomy</topic><topic>Celestial bodies</topic><topic>Computer simulation</topic><topic>Computing costs</topic><topic>Covariance</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Datasets</topic><topic>Extrasolar planets</topic><topic>Gaussian process</topic><topic>Harmonic oscillators</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>Planetary rotation</topic><topic>planetary systems</topic><topic>Probabilistic inference</topic><topic>Probabilistic methods</topic><topic>stars: rotation</topic><topic>Stellar oscillations</topic><topic>Stellar rotation</topic><topic>Time domain analysis</topic><topic>Time series</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foreman-Mackey, Daniel</creatorcontrib><creatorcontrib>Agol, Eric</creatorcontrib><creatorcontrib>Ambikasaran, Sivaram</creatorcontrib><creatorcontrib>Angus, Ruth</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Foreman-Mackey, Daniel</au><au>Agol, Eric</au><au>Ambikasaran, Sivaram</au><au>Angus, Ruth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>154</volume><issue>6</issue><spage>220</spage><pages>220-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/aa9332</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4540-5661</orcidid><orcidid>https://orcid.org/0000-0003-2978-6281</orcidid><orcidid>https://orcid.org/0000-0002-0802-9145</orcidid><orcidid>https://orcid.org/0000-0002-9328-5652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2017-12, Vol.154 (6), p.220
issn 0004-6256
1538-3881
language eng
recordid cdi_iop_journals_10_3847_1538_3881_aa9332
source IOP Publishing Free Content
subjects asteroseismology
Astronomical data
Astronomical models
Astronomy
Celestial bodies
Computer simulation
Computing costs
Covariance
Data analysis
Data points
Datasets
Extrasolar planets
Gaussian process
Harmonic oscillators
methods: data analysis
methods: statistical
Planetary rotation
planetary systems
Probabilistic inference
Probabilistic methods
stars: rotation
Stellar oscillations
Stellar rotation
Time domain analysis
Time series
Transit
title Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Scalable%20Gaussian%20Process%20Modeling%20with%20Applications%20to%20Astronomical%20Time%20Series&rft.jtitle=The%20Astronomical%20journal&rft.au=Foreman-Mackey,%20Daniel&rft.date=2017-12-01&rft.volume=154&rft.issue=6&rft.spage=220&rft.pages=220-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/aa9332&rft_dat=%3Cproquest_O3W%3E2365686916%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365686916&rft_id=info:pmid/&rfr_iscdi=true