The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II
We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations....
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2017-06, Vol.153 (6), p.254 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 254 |
container_title | The Astronomical journal |
container_volume | 153 |
creator | Spencer, Meghin E. Mateo, Mario Walker, Matthew G. Olszewski, Edward W. McConnachie, Alan W. Kirby, Evan N. Koch, Andreas |
description | We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals. |
doi_str_mv | 10.3847/1538-3881/aa6d51 |
format | Article |
fullrecord | <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_aa6d51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ajaa6d51</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHINSO_xZuNNASKRIHytnaOLZIVZLKDgLevomKuHFaafXNaGYIuebsVoA0C64EZAKALxB1o_gJmf29TsmMMSYznSt9Ti5S2jLGOTA5I8vNu6fLtsP4Q1cR3dD2He0DfR0wJtp29PELY6Br3OF369M9nfgCk5-gyve0LC_JWcBd8le_d07eVk-b4jmrXtZl8VBlTuT5kAGrg8LgPDTSoTZN3UhdgxboDAsCEERtJFPKgQ4mN4A5qNojSoP8rnZiTtjR18U-peiD3cf2YwxuObPTBnYqbKfC9rjBKLk5Stp-b7f9Z-zGgP_jB2AsW-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</title><source>IOP_英国物理学会OA刊</source><creator>Spencer, Meghin E. ; Mateo, Mario ; Walker, Matthew G. ; Olszewski, Edward W. ; McConnachie, Alan W. ; Kirby, Evan N. ; Koch, Andreas</creator><creatorcontrib>Spencer, Meghin E. ; Mateo, Mario ; Walker, Matthew G. ; Olszewski, Edward W. ; McConnachie, Alan W. ; Kirby, Evan N. ; Koch, Andreas</creatorcontrib><description>We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/aa6d51</identifier><language>eng</language><publisher>The American Astronomical Society</publisher><subject>binaries: general ; galaxies: dwarf ; galaxies: individual (Leo II) ; galaxies: kinematics and dynamics</subject><ispartof>The Astronomical journal, 2017-06, Vol.153 (6), p.254</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</citedby><cites>FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</cites><orcidid>0000-0003-2496-1925 ; 0000-0001-6196-5162 ; 0000-0003-1240-1939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa6d51/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa6d51$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Spencer, Meghin E.</creatorcontrib><creatorcontrib>Mateo, Mario</creatorcontrib><creatorcontrib>Walker, Matthew G.</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>McConnachie, Alan W.</creatorcontrib><creatorcontrib>Kirby, Evan N.</creatorcontrib><creatorcontrib>Koch, Andreas</creatorcontrib><title>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.</description><subject>binaries: general</subject><subject>galaxies: dwarf</subject><subject>galaxies: individual (Leo II)</subject><subject>galaxies: kinematics and dynamics</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHINSO_xZuNNASKRIHytnaOLZIVZLKDgLevomKuHFaafXNaGYIuebsVoA0C64EZAKALxB1o_gJmf29TsmMMSYznSt9Ti5S2jLGOTA5I8vNu6fLtsP4Q1cR3dD2He0DfR0wJtp29PELY6Br3OF369M9nfgCk5-gyve0LC_JWcBd8le_d07eVk-b4jmrXtZl8VBlTuT5kAGrg8LgPDTSoTZN3UhdgxboDAsCEERtJFPKgQ4mN4A5qNojSoP8rnZiTtjR18U-peiD3cf2YwxuObPTBnYqbKfC9rjBKLk5Stp-b7f9Z-zGgP_jB2AsW-k</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Spencer, Meghin E.</creator><creator>Mateo, Mario</creator><creator>Walker, Matthew G.</creator><creator>Olszewski, Edward W.</creator><creator>McConnachie, Alan W.</creator><creator>Kirby, Evan N.</creator><creator>Koch, Andreas</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2496-1925</orcidid><orcidid>https://orcid.org/0000-0001-6196-5162</orcidid><orcidid>https://orcid.org/0000-0003-1240-1939</orcidid></search><sort><creationdate>20170601</creationdate><title>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</title><author>Spencer, Meghin E. ; Mateo, Mario ; Walker, Matthew G. ; Olszewski, Edward W. ; McConnachie, Alan W. ; Kirby, Evan N. ; Koch, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>binaries: general</topic><topic>galaxies: dwarf</topic><topic>galaxies: individual (Leo II)</topic><topic>galaxies: kinematics and dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Meghin E.</creatorcontrib><creatorcontrib>Mateo, Mario</creatorcontrib><creatorcontrib>Walker, Matthew G.</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>McConnachie, Alan W.</creatorcontrib><creatorcontrib>Kirby, Evan N.</creatorcontrib><creatorcontrib>Koch, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spencer, Meghin E.</au><au>Mateo, Mario</au><au>Walker, Matthew G.</au><au>Olszewski, Edward W.</au><au>McConnachie, Alan W.</au><au>Kirby, Evan N.</au><au>Koch, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>153</volume><issue>6</issue><spage>254</spage><pages>254-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.</abstract><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/aa6d51</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2496-1925</orcidid><orcidid>https://orcid.org/0000-0001-6196-5162</orcidid><orcidid>https://orcid.org/0000-0003-1240-1939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2017-06, Vol.153 (6), p.254 |
issn | 0004-6256 1538-3881 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_3881_aa6d51 |
source | IOP_英国物理学会OA刊 |
subjects | binaries: general galaxies: dwarf galaxies: individual (Leo II) galaxies: kinematics and dynamics |
title | The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Binary%20Fraction%20of%20Stars%20in%20Dwarf%20Galaxies:%20The%20Case%20of%20Leo%20II&rft.jtitle=The%20Astronomical%20journal&rft.au=Spencer,%20Meghin%20E.&rft.date=2017-06-01&rft.volume=153&rft.issue=6&rft.spage=254&rft.pages=254-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/aa6d51&rft_dat=%3Ciop_O3W%3Eajaa6d51%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |