The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II

We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2017-06, Vol.153 (6), p.254
Hauptverfasser: Spencer, Meghin E., Mateo, Mario, Walker, Matthew G., Olszewski, Edward W., McConnachie, Alan W., Kirby, Evan N., Koch, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 254
container_title The Astronomical journal
container_volume 153
creator Spencer, Meghin E.
Mateo, Mario
Walker, Matthew G.
Olszewski, Edward W.
McConnachie, Alan W.
Kirby, Evan N.
Koch, Andreas
description We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.
doi_str_mv 10.3847/1538-3881/aa6d51
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_3881_aa6d51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ajaa6d51</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHINSO_xZuNNASKRIHytnaOLZIVZLKDgLevomKuHFaafXNaGYIuebsVoA0C64EZAKALxB1o_gJmf29TsmMMSYznSt9Ti5S2jLGOTA5I8vNu6fLtsP4Q1cR3dD2He0DfR0wJtp29PELY6Br3OF369M9nfgCk5-gyve0LC_JWcBd8le_d07eVk-b4jmrXtZl8VBlTuT5kAGrg8LgPDTSoTZN3UhdgxboDAsCEERtJFPKgQ4mN4A5qNojSoP8rnZiTtjR18U-peiD3cf2YwxuObPTBnYqbKfC9rjBKLk5Stp-b7f9Z-zGgP_jB2AsW-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</title><source>IOP_英国物理学会OA刊</source><creator>Spencer, Meghin E. ; Mateo, Mario ; Walker, Matthew G. ; Olszewski, Edward W. ; McConnachie, Alan W. ; Kirby, Evan N. ; Koch, Andreas</creator><creatorcontrib>Spencer, Meghin E. ; Mateo, Mario ; Walker, Matthew G. ; Olszewski, Edward W. ; McConnachie, Alan W. ; Kirby, Evan N. ; Koch, Andreas</creatorcontrib><description>We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/aa6d51</identifier><language>eng</language><publisher>The American Astronomical Society</publisher><subject>binaries: general ; galaxies: dwarf ; galaxies: individual (Leo II) ; galaxies: kinematics and dynamics</subject><ispartof>The Astronomical journal, 2017-06, Vol.153 (6), p.254</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</citedby><cites>FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</cites><orcidid>0000-0003-2496-1925 ; 0000-0001-6196-5162 ; 0000-0003-1240-1939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa6d51/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/aa6d51$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Spencer, Meghin E.</creatorcontrib><creatorcontrib>Mateo, Mario</creatorcontrib><creatorcontrib>Walker, Matthew G.</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>McConnachie, Alan W.</creatorcontrib><creatorcontrib>Kirby, Evan N.</creatorcontrib><creatorcontrib>Koch, Andreas</creatorcontrib><title>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.</description><subject>binaries: general</subject><subject>galaxies: dwarf</subject><subject>galaxies: individual (Leo II)</subject><subject>galaxies: kinematics and dynamics</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHINSO_xZuNNASKRIHytnaOLZIVZLKDgLevomKuHFaafXNaGYIuebsVoA0C64EZAKALxB1o_gJmf29TsmMMSYznSt9Ti5S2jLGOTA5I8vNu6fLtsP4Q1cR3dD2He0DfR0wJtp29PELY6Br3OF369M9nfgCk5-gyve0LC_JWcBd8le_d07eVk-b4jmrXtZl8VBlTuT5kAGrg8LgPDTSoTZN3UhdgxboDAsCEERtJFPKgQ4mN4A5qNojSoP8rnZiTtjR18U-peiD3cf2YwxuObPTBnYqbKfC9rjBKLk5Stp-b7f9Z-zGgP_jB2AsW-k</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Spencer, Meghin E.</creator><creator>Mateo, Mario</creator><creator>Walker, Matthew G.</creator><creator>Olszewski, Edward W.</creator><creator>McConnachie, Alan W.</creator><creator>Kirby, Evan N.</creator><creator>Koch, Andreas</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2496-1925</orcidid><orcidid>https://orcid.org/0000-0001-6196-5162</orcidid><orcidid>https://orcid.org/0000-0003-1240-1939</orcidid></search><sort><creationdate>20170601</creationdate><title>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</title><author>Spencer, Meghin E. ; Mateo, Mario ; Walker, Matthew G. ; Olszewski, Edward W. ; McConnachie, Alan W. ; Kirby, Evan N. ; Koch, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-80bf5afce8d4ca67dbd46b863ac70f38a83b74055c86f7278a285beaa47a19bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>binaries: general</topic><topic>galaxies: dwarf</topic><topic>galaxies: individual (Leo II)</topic><topic>galaxies: kinematics and dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Meghin E.</creatorcontrib><creatorcontrib>Mateo, Mario</creatorcontrib><creatorcontrib>Walker, Matthew G.</creatorcontrib><creatorcontrib>Olszewski, Edward W.</creatorcontrib><creatorcontrib>McConnachie, Alan W.</creatorcontrib><creatorcontrib>Kirby, Evan N.</creatorcontrib><creatorcontrib>Koch, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spencer, Meghin E.</au><au>Mateo, Mario</au><au>Walker, Matthew G.</au><au>Olszewski, Edward W.</au><au>McConnachie, Alan W.</au><au>Kirby, Evan N.</au><au>Koch, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>153</volume><issue>6</issue><spage>254</spage><pages>254-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from to , depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (∼0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s−1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.</abstract><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/aa6d51</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2496-1925</orcidid><orcidid>https://orcid.org/0000-0001-6196-5162</orcidid><orcidid>https://orcid.org/0000-0003-1240-1939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2017-06, Vol.153 (6), p.254
issn 0004-6256
1538-3881
language eng
recordid cdi_iop_journals_10_3847_1538_3881_aa6d51
source IOP_英国物理学会OA刊
subjects binaries: general
galaxies: dwarf
galaxies: individual (Leo II)
galaxies: kinematics and dynamics
title The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Binary%20Fraction%20of%20Stars%20in%20Dwarf%20Galaxies:%20The%20Case%20of%20Leo%20II&rft.jtitle=The%20Astronomical%20journal&rft.au=Spencer,%20Meghin%20E.&rft.date=2017-06-01&rft.volume=153&rft.issue=6&rft.spage=254&rft.pages=254-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/aa6d51&rft_dat=%3Ciop_O3W%3Eajaa6d51%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true