Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach

A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2023-02, Vol.62 (2), p.27001
Hauptverfasser: Watanabe, Makoto, Kotani, Kiyoshi, Jimbo, Yasuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 27001
container_title Japanese Journal of Applied Physics
container_volume 62
creator Watanabe, Makoto
Kotani, Kiyoshi
Jimbo, Yasuhiko
description A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance.
doi_str_mv 10.35848/1347-4065/acb2a3
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_35848_1347_4065_acb2a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776686404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-56200ae5e6108a578197aecc177de0afbfd3cccb0759d0edfa4e426518ef5e5e3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEwhJqO46dsqGKl1TEArPl2heaKIlTO0Hqv8dpECwwne57ne5D6JKSmzTLeb6gKZcJJyJbaLNhOj1Csx_oGM0IYTThS8ZO0VkIVVxFxukM6RdtvMONs1CX7Qd2Ba7L3VBabPw-9LrGBuoaD2EkG222ZQu4Bu3bAwD91tlb7CGA_3Slx8Y13dCPnO4676LhHJ0Uug5w8T3n6P3h_m31lKxfH59Xd-vEpIL1SSYYIRoyEJTkOpM5XUoNxlApLRBdbAqbGmM2RGZLS8AWmgOPT9Aciiza0jm6mnLj2d0AoVeVG3wbTyompRC54IRHFZ1U8esQPBSq82Wj_V5Rog5NqrE2Ndampiaj53rylK77Da0q3SnBFFOESUKo6mwRpckf0v-jvwD1BYTX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776686404</pqid></control><display><type>article</type><title>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creator><creatorcontrib>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creatorcontrib><description>A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/acb2a3</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Accuracy ; Capacitance ; circuit simulation ; Circuits ; liquid crystal display ; Liquid crystals ; Machine learning ; macro model ; reservoir computing ; Response time (computers) ; Runge-Kutta method ; Transmittance ; Verilog-A</subject><ispartof>Japanese Journal of Applied Physics, 2023-02, Vol.62 (2), p.27001</ispartof><rights>2023 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-56200ae5e6108a578197aecc177de0afbfd3cccb0759d0edfa4e426518ef5e5e3</cites><orcidid>0000-0002-7561-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/acb2a3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><title>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance.</description><subject>Accuracy</subject><subject>Capacitance</subject><subject>circuit simulation</subject><subject>Circuits</subject><subject>liquid crystal display</subject><subject>Liquid crystals</subject><subject>Machine learning</subject><subject>macro model</subject><subject>reservoir computing</subject><subject>Response time (computers)</subject><subject>Runge-Kutta method</subject><subject>Transmittance</subject><subject>Verilog-A</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQthBIlMIPYLPEwhJqO46dsqGKl1TEArPl2heaKIlTO0Hqv8dpECwwne57ne5D6JKSmzTLeb6gKZcJJyJbaLNhOj1Csx_oGM0IYTThS8ZO0VkIVVxFxukM6RdtvMONs1CX7Qd2Ba7L3VBabPw-9LrGBuoaD2EkG222ZQu4Bu3bAwD91tlb7CGA_3Slx8Y13dCPnO4676LhHJ0Uug5w8T3n6P3h_m31lKxfH59Xd-vEpIL1SSYYIRoyEJTkOpM5XUoNxlApLRBdbAqbGmM2RGZLS8AWmgOPT9Aciiza0jm6mnLj2d0AoVeVG3wbTyompRC54IRHFZ1U8esQPBSq82Wj_V5Rog5NqrE2Ndampiaj53rylK77Da0q3SnBFFOESUKo6mwRpckf0v-jvwD1BYTX</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Watanabe, Makoto</creator><creator>Kotani, Kiyoshi</creator><creator>Jimbo, Yasuhiko</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></search><sort><creationdate>20230201</creationdate><title>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</title><author>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-56200ae5e6108a578197aecc177de0afbfd3cccb0759d0edfa4e426518ef5e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Capacitance</topic><topic>circuit simulation</topic><topic>Circuits</topic><topic>liquid crystal display</topic><topic>Liquid crystals</topic><topic>Machine learning</topic><topic>macro model</topic><topic>reservoir computing</topic><topic>Response time (computers)</topic><topic>Runge-Kutta method</topic><topic>Transmittance</topic><topic>Verilog-A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Makoto</au><au>Kotani, Kiyoshi</au><au>Jimbo, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><spage>27001</spage><pages>27001-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/acb2a3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2023-02, Vol.62 (2), p.27001
issn 0021-4922
1347-4065
language eng
recordid cdi_iop_journals_10_35848_1347_4065_acb2a3
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Accuracy
Capacitance
circuit simulation
Circuits
liquid crystal display
Liquid crystals
Machine learning
macro model
reservoir computing
Response time (computers)
Runge-Kutta method
Transmittance
Verilog-A
title Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macro%20modeling%20of%20liquid%20crystal%20cell%20using%20machine%20learning%20method:%20reservoir%20computing%20approach&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Watanabe,%20Makoto&rft.date=2023-02-01&rft.volume=62&rft.issue=2&rft.spage=27001&rft.pages=27001-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/acb2a3&rft_dat=%3Cproquest_iop_j%3E2776686404%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776686404&rft_id=info:pmid/&rfr_iscdi=true