Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach
A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2023-02, Vol.62 (2), p.27001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 27001 |
container_title | Japanese Journal of Applied Physics |
container_volume | 62 |
creator | Watanabe, Makoto Kotani, Kiyoshi Jimbo, Yasuhiko |
description | A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance. |
doi_str_mv | 10.35848/1347-4065/acb2a3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_35848_1347_4065_acb2a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776686404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-56200ae5e6108a578197aecc177de0afbfd3cccb0759d0edfa4e426518ef5e5e3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEwhJqO46dsqGKl1TEArPl2heaKIlTO0Hqv8dpECwwne57ne5D6JKSmzTLeb6gKZcJJyJbaLNhOj1Csx_oGM0IYTThS8ZO0VkIVVxFxukM6RdtvMONs1CX7Qd2Ba7L3VBabPw-9LrGBuoaD2EkG222ZQu4Bu3bAwD91tlb7CGA_3Slx8Y13dCPnO4676LhHJ0Uug5w8T3n6P3h_m31lKxfH59Xd-vEpIL1SSYYIRoyEJTkOpM5XUoNxlApLRBdbAqbGmM2RGZLS8AWmgOPT9Aciiza0jm6mnLj2d0AoVeVG3wbTyompRC54IRHFZ1U8esQPBSq82Wj_V5Rog5NqrE2Ndampiaj53rylK77Da0q3SnBFFOESUKo6mwRpckf0v-jvwD1BYTX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776686404</pqid></control><display><type>article</type><title>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creator><creatorcontrib>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creatorcontrib><description>A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/acb2a3</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Accuracy ; Capacitance ; circuit simulation ; Circuits ; liquid crystal display ; Liquid crystals ; Machine learning ; macro model ; reservoir computing ; Response time (computers) ; Runge-Kutta method ; Transmittance ; Verilog-A</subject><ispartof>Japanese Journal of Applied Physics, 2023-02, Vol.62 (2), p.27001</ispartof><rights>2023 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-56200ae5e6108a578197aecc177de0afbfd3cccb0759d0edfa4e426518ef5e5e3</cites><orcidid>0000-0002-7561-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/acb2a3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><title>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance.</description><subject>Accuracy</subject><subject>Capacitance</subject><subject>circuit simulation</subject><subject>Circuits</subject><subject>liquid crystal display</subject><subject>Liquid crystals</subject><subject>Machine learning</subject><subject>macro model</subject><subject>reservoir computing</subject><subject>Response time (computers)</subject><subject>Runge-Kutta method</subject><subject>Transmittance</subject><subject>Verilog-A</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQthBIlMIPYLPEwhJqO46dsqGKl1TEArPl2heaKIlTO0Hqv8dpECwwne57ne5D6JKSmzTLeb6gKZcJJyJbaLNhOj1Csx_oGM0IYTThS8ZO0VkIVVxFxukM6RdtvMONs1CX7Qd2Ba7L3VBabPw-9LrGBuoaD2EkG222ZQu4Bu3bAwD91tlb7CGA_3Slx8Y13dCPnO4676LhHJ0Uug5w8T3n6P3h_m31lKxfH59Xd-vEpIL1SSYYIRoyEJTkOpM5XUoNxlApLRBdbAqbGmM2RGZLS8AWmgOPT9Aciiza0jm6mnLj2d0AoVeVG3wbTyompRC54IRHFZ1U8esQPBSq82Wj_V5Rog5NqrE2Ndampiaj53rylK77Da0q3SnBFFOESUKo6mwRpckf0v-jvwD1BYTX</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Watanabe, Makoto</creator><creator>Kotani, Kiyoshi</creator><creator>Jimbo, Yasuhiko</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></search><sort><creationdate>20230201</creationdate><title>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</title><author>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-56200ae5e6108a578197aecc177de0afbfd3cccb0759d0edfa4e426518ef5e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Capacitance</topic><topic>circuit simulation</topic><topic>Circuits</topic><topic>liquid crystal display</topic><topic>Liquid crystals</topic><topic>Machine learning</topic><topic>macro model</topic><topic>reservoir computing</topic><topic>Response time (computers)</topic><topic>Runge-Kutta method</topic><topic>Transmittance</topic><topic>Verilog-A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Makoto</au><au>Kotani, Kiyoshi</au><au>Jimbo, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><spage>27001</spage><pages>27001-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A macro model of liquid crystal cells including electrical and optical behaviors has been developed using a machine learning framework called reservoir computing and implemented into a circuit simulator. Assuming the arbitrary time steps given from the circuit simulator, we confirmed that our model in which the time-continuous reservoir update equation is discretized by a fourth-order Runge–Kutta method shows high prediction accuracy even at the different time steps from that in the training phase. The director distribution of liquid crystals, which is the microscopic state that realizes the specific macroscopic characteristic, capacitance, and transmittance, is not uniquely determined. Therefore, it is essential to utilize the reservoir’s ability to memorize history to improve prediction accuracy. We found it effective to adjust the parameters that control memory length and update speed according to the response time of each capacitance and transmittance.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/acb2a3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2023-02, Vol.62 (2), p.27001 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_iop_journals_10_35848_1347_4065_acb2a3 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Accuracy Capacitance circuit simulation Circuits liquid crystal display Liquid crystals Machine learning macro model reservoir computing Response time (computers) Runge-Kutta method Transmittance Verilog-A |
title | Macro modeling of liquid crystal cell using machine learning method: reservoir computing approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macro%20modeling%20of%20liquid%20crystal%20cell%20using%20machine%20learning%20method:%20reservoir%20computing%20approach&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Watanabe,%20Makoto&rft.date=2023-02-01&rft.volume=62&rft.issue=2&rft.spage=27001&rft.pages=27001-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/acb2a3&rft_dat=%3Cproquest_iop_j%3E2776686404%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776686404&rft_id=info:pmid/&rfr_iscdi=true |