Pinning forces of sliding drops at defects

Wetting of surfaces depends critically on defects which alter the shape of the drop. However, no experimental verification of forces owing to the three phase contact line deformation at single defects is available. We imaged the contact line of sliding drops on hydrophobic surfaces by video microsco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2022-08, Vol.139 (4), p.47001
Hauptverfasser: Saal, Alexander, Straub, Benedikt B., Butt, Hans-Jürgen, Berger, Rüdiger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 47001
container_title Europhysics letters
container_volume 139
creator Saal, Alexander
Straub, Benedikt B.
Butt, Hans-Jürgen
Berger, Rüdiger
description Wetting of surfaces depends critically on defects which alter the shape of the drop. However, no experimental verification of forces owing to the three phase contact line deformation at single defects is available. We imaged the contact line of sliding drops on hydrophobic surfaces by video microscopy. From the deformation of the contact line, we calculate the force acting on a sliding drop using an equation going back to Joanny and de Gennes ( J. Chem. Phys. , 81 (1984) 554). The calculated forces quantitatively agree with directly measured forces acting between model defects and water drops. In addition, both forces quantitatively match with the force calculated by contact angle differences between the defect and the surface. The quantitative agreement even holds for defects reaching a size of of the drop diameter. Our validation for drop’s pinning forces at single defects is an important step towards a general understanding of contact line motion on heterogeneous surfaces.
doi_str_mv 10.1209/0295-5075/ac7acf
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1209_0295_5075_ac7acf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110112191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-17c6cd9ffbdfddb2b27b78eac2b687e9824d1f5e94c41b774f791308c75e40d53</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKJgrd49FjwIYt28NGmSoyzrByzoQc-hzYd0qU1Mugf_vS0VvYinB-_NzJsZhM4B3wDBcoWJZCXDnK0azRvtDlAGRNQlFYweouznfIxOUtphDCCgztDVczcM3fBWOB-1TYV3Reo7M29M9CEVzVgY66we0yk6ck2f7Nn3zNHr3eZl_VBun-4f17fbUleCjCVwXWsjnWuNM6YlLeEtF7bRpK0Ft1IQasAxK6mm0HJOHZdQYaE5sxQbVuXoYtEN0X_sbRrVzu_jML1UFcBknMBEyBFeUDr6lKJ1KsTuvYmfCrCaG1FzZDVHVksjE-V6oXQ-_Gr-A7_8A25Dr6CSiirKpxZVMK76AnIUbs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110112191</pqid></control><display><type>article</type><title>Pinning forces of sliding drops at defects</title><source>IOP Publishing Journals</source><creator>Saal, Alexander ; Straub, Benedikt B. ; Butt, Hans-Jürgen ; Berger, Rüdiger</creator><creatorcontrib>Saal, Alexander ; Straub, Benedikt B. ; Butt, Hans-Jürgen ; Berger, Rüdiger</creatorcontrib><description>Wetting of surfaces depends critically on defects which alter the shape of the drop. However, no experimental verification of forces owing to the three phase contact line deformation at single defects is available. We imaged the contact line of sliding drops on hydrophobic surfaces by video microscopy. From the deformation of the contact line, we calculate the force acting on a sliding drop using an equation going back to Joanny and de Gennes ( J. Chem. Phys. , 81 (1984) 554). The calculated forces quantitatively agree with directly measured forces acting between model defects and water drops. In addition, both forces quantitatively match with the force calculated by contact angle differences between the defect and the surface. The quantitative agreement even holds for defects reaching a size of of the drop diameter. Our validation for drop’s pinning forces at single defects is an important step towards a general understanding of contact line motion on heterogeneous surfaces.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/ac7acf</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Contact angle ; Defects ; Deformation ; Pinning ; Sliding ; Water drops</subject><ispartof>Europhysics letters, 2022-08, Vol.139 (4), p.47001</ispartof><rights>Copyright © 2022 The author(s)</rights><rights>Copyright © 2022 The author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-17c6cd9ffbdfddb2b27b78eac2b687e9824d1f5e94c41b774f791308c75e40d53</citedby><cites>FETCH-LOGICAL-c382t-17c6cd9ffbdfddb2b27b78eac2b687e9824d1f5e94c41b774f791308c75e40d53</cites><orcidid>0000-0002-4084-0675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/ac7acf/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Saal, Alexander</creatorcontrib><creatorcontrib>Straub, Benedikt B.</creatorcontrib><creatorcontrib>Butt, Hans-Jürgen</creatorcontrib><creatorcontrib>Berger, Rüdiger</creatorcontrib><title>Pinning forces of sliding drops at defects</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>Wetting of surfaces depends critically on defects which alter the shape of the drop. However, no experimental verification of forces owing to the three phase contact line deformation at single defects is available. We imaged the contact line of sliding drops on hydrophobic surfaces by video microscopy. From the deformation of the contact line, we calculate the force acting on a sliding drop using an equation going back to Joanny and de Gennes ( J. Chem. Phys. , 81 (1984) 554). The calculated forces quantitatively agree with directly measured forces acting between model defects and water drops. In addition, both forces quantitatively match with the force calculated by contact angle differences between the defect and the surface. The quantitative agreement even holds for defects reaching a size of of the drop diameter. Our validation for drop’s pinning forces at single defects is an important step towards a general understanding of contact line motion on heterogeneous surfaces.</description><subject>Contact angle</subject><subject>Defects</subject><subject>Deformation</subject><subject>Pinning</subject><subject>Sliding</subject><subject>Water drops</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9UE1LxDAUDKJgrd49FjwIYt28NGmSoyzrByzoQc-hzYd0qU1Mugf_vS0VvYinB-_NzJsZhM4B3wDBcoWJZCXDnK0azRvtDlAGRNQlFYweouznfIxOUtphDCCgztDVczcM3fBWOB-1TYV3Reo7M29M9CEVzVgY66we0yk6ck2f7Nn3zNHr3eZl_VBun-4f17fbUleCjCVwXWsjnWuNM6YlLeEtF7bRpK0Ft1IQasAxK6mm0HJOHZdQYaE5sxQbVuXoYtEN0X_sbRrVzu_jML1UFcBknMBEyBFeUDr6lKJ1KsTuvYmfCrCaG1FzZDVHVksjE-V6oXQ-_Gr-A7_8A25Dr6CSiirKpxZVMK76AnIUbs8</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Saal, Alexander</creator><creator>Straub, Benedikt B.</creator><creator>Butt, Hans-Jürgen</creator><creator>Berger, Rüdiger</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4084-0675</orcidid></search><sort><creationdate>20220801</creationdate><title>Pinning forces of sliding drops at defects</title><author>Saal, Alexander ; Straub, Benedikt B. ; Butt, Hans-Jürgen ; Berger, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-17c6cd9ffbdfddb2b27b78eac2b687e9824d1f5e94c41b774f791308c75e40d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Contact angle</topic><topic>Defects</topic><topic>Deformation</topic><topic>Pinning</topic><topic>Sliding</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saal, Alexander</creatorcontrib><creatorcontrib>Straub, Benedikt B.</creatorcontrib><creatorcontrib>Butt, Hans-Jürgen</creatorcontrib><creatorcontrib>Berger, Rüdiger</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saal, Alexander</au><au>Straub, Benedikt B.</au><au>Butt, Hans-Jürgen</au><au>Berger, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pinning forces of sliding drops at defects</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>139</volume><issue>4</issue><spage>47001</spage><pages>47001-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>Wetting of surfaces depends critically on defects which alter the shape of the drop. However, no experimental verification of forces owing to the three phase contact line deformation at single defects is available. We imaged the contact line of sliding drops on hydrophobic surfaces by video microscopy. From the deformation of the contact line, we calculate the force acting on a sliding drop using an equation going back to Joanny and de Gennes ( J. Chem. Phys. , 81 (1984) 554). The calculated forces quantitatively agree with directly measured forces acting between model defects and water drops. In addition, both forces quantitatively match with the force calculated by contact angle differences between the defect and the surface. The quantitative agreement even holds for defects reaching a size of of the drop diameter. Our validation for drop’s pinning forces at single defects is an important step towards a general understanding of contact line motion on heterogeneous surfaces.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/ac7acf</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4084-0675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2022-08, Vol.139 (4), p.47001
issn 0295-5075
1286-4854
language eng
recordid cdi_iop_journals_10_1209_0295_5075_ac7acf
source IOP Publishing Journals
subjects Contact angle
Defects
Deformation
Pinning
Sliding
Water drops
title Pinning forces of sliding drops at defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pinning%20forces%20of%20sliding%20drops%20at%20defects&rft.jtitle=Europhysics%20letters&rft.au=Saal,%20Alexander&rft.date=2022-08-01&rft.volume=139&rft.issue=4&rft.spage=47001&rft.pages=47001-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/ac7acf&rft_dat=%3Cproquest_iop_j%3E3110112191%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110112191&rft_id=info:pmid/&rfr_iscdi=true