Understanding Characteristic Electrochemical Impedance Spectra of Redox Flow Batteries with Multiphysics Modelling

Abstract Electrochemical impedance spectroscopy (EIS) is a non-destructive technique for analyzing electrochemical systems (such as redox flow batteries – RFBs). Battery researchers widely adopt equivalent circuit models (ECMs) to analyze EIS spectra of RFBs and attempt to use the circuit to deduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2023-08, Vol.MA2023-01 (25), p.1678-1678
Hauptverfasser: Alhammadi, Ayoob, Fetyan, Abdulmonem, Susantyoko, Rahmat Agung, Bamgbopa, Musbaudeen O.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1678
container_issue 25
container_start_page 1678
container_title Meeting abstracts (Electrochemical Society)
container_volume MA2023-01
creator Alhammadi, Ayoob
Fetyan, Abdulmonem
Susantyoko, Rahmat Agung
Bamgbopa, Musbaudeen O.
description Abstract Electrochemical impedance spectroscopy (EIS) is a non-destructive technique for analyzing electrochemical systems (such as redox flow batteries – RFBs). Battery researchers widely adopt equivalent circuit models (ECMs) to analyze EIS spectra of RFBs and attempt to use the circuit to deduce prevalent transport and kinetic properties [1]. Straightforward adoption of these ECMs suffers from some setbacks which need rectifying. There is a major issue of poor or inconsistent physical interpretation of the different circuit elements. ECMs of batteries are commonly used in real-time applications due to their simplicity and importance for determining properties like state-of-charge. However, prediction performance in low state-of-charge areas has to be improved [2], which reinforces the need to relate recorded spectra to the physical properties of cell components. Using an experimentally validated full Multiphysics model of single-cell vanadium RFB analyzed in the frequency domain, we approach understanding the EIS spectra characteristics based on the influence of cell features and operating parameters. To achieve our analyses, we investigate the effects of different cell properties and operating parameters on the Multiphysics model produced EIS spectra and the resulting ECM circuit element parameters that fit the spectra. Five different values for each cell property or operating parameter are considered for the following components: Electrode: Electrical conductivity, porosity vis a vie specific surface area and hydraulic permeability, reaction rate constants for the positive and negative sides. Membrane: Ionic conductivity, fixed charge concentration, porosity, and hydraulic permeability. Electrolyte: State-of-charge, Composition vis a vie bulk diffusion coefficients of species, density, and viscosity. References [1] A.K. Tripathi, D. Choudhury, M.E. Joy, M.J.J.o.T.E.S. Neergat, Electrochemical Impedance Spectroscopic Investigation of Vanadium Redox Flow Battery, 169 (2022) 050513. [2] Y.A. Gandomi, D. Aaron, T. Zawodzinski, M.J.J.o.T.E.S. Mench, In situ potential distribution measurement and validated model for all-vanadium redox flow battery, 163 (2015) A5188.
doi_str_mv 10.1149/MA2023-01251678mtgabs
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_journals_10_1149_MA2023_01251678mtgabs</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c88s-542d80f446ba79cc09f1a374fce2e49a43eafd31293023ad2f2187afcbed8823</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFYfQdgXiO4pzeayllYLLYLV6zDdQ7MlyYbdLdW3N6UieOXVDAzfzPwfQveUPFAqysf1lBHGM0JZTieFbNMOtvECjRjNacYIzy9_e8Gv0U2Me0K4lIyNUPjotAkxQaddt8OzGgKoZIKLySk8b4xKwavatE5Bg5dtbzR0yuBNf5oA9ha_Ge0_8aLxR_wE6cSaiI8u1Xh9aJLr66_oVMRrr03TDEdu0ZWFJpq7nzpGm8X8ffaSrV6fl7PpKlNSxiwXTEtihZhsoSiVIqWlwAthlWFGlCC4Aas5ZSUfwoNmllFZgFVbo4dofIzy81YVfIzB2KoProXwVVFSnbRVZ23VX20DR8-c832194fQDT_-w3wDDjJ1JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Characteristic Electrochemical Impedance Spectra of Redox Flow Batteries with Multiphysics Modelling</title><source>IOP Journals (Institute Of Physics)</source><creator>Alhammadi, Ayoob ; Fetyan, Abdulmonem ; Susantyoko, Rahmat Agung ; Bamgbopa, Musbaudeen O.</creator><creatorcontrib>Alhammadi, Ayoob ; Fetyan, Abdulmonem ; Susantyoko, Rahmat Agung ; Bamgbopa, Musbaudeen O.</creatorcontrib><description>Abstract Electrochemical impedance spectroscopy (EIS) is a non-destructive technique for analyzing electrochemical systems (such as redox flow batteries – RFBs). Battery researchers widely adopt equivalent circuit models (ECMs) to analyze EIS spectra of RFBs and attempt to use the circuit to deduce prevalent transport and kinetic properties [1]. Straightforward adoption of these ECMs suffers from some setbacks which need rectifying. There is a major issue of poor or inconsistent physical interpretation of the different circuit elements. ECMs of batteries are commonly used in real-time applications due to their simplicity and importance for determining properties like state-of-charge. However, prediction performance in low state-of-charge areas has to be improved [2], which reinforces the need to relate recorded spectra to the physical properties of cell components. Using an experimentally validated full Multiphysics model of single-cell vanadium RFB analyzed in the frequency domain, we approach understanding the EIS spectra characteristics based on the influence of cell features and operating parameters. To achieve our analyses, we investigate the effects of different cell properties and operating parameters on the Multiphysics model produced EIS spectra and the resulting ECM circuit element parameters that fit the spectra. Five different values for each cell property or operating parameter are considered for the following components: Electrode: Electrical conductivity, porosity vis a vie specific surface area and hydraulic permeability, reaction rate constants for the positive and negative sides. Membrane: Ionic conductivity, fixed charge concentration, porosity, and hydraulic permeability. Electrolyte: State-of-charge, Composition vis a vie bulk diffusion coefficients of species, density, and viscosity. References [1] A.K. Tripathi, D. Choudhury, M.E. Joy, M.J.J.o.T.E.S. Neergat, Electrochemical Impedance Spectroscopic Investigation of Vanadium Redox Flow Battery, 169 (2022) 050513. [2] Y.A. Gandomi, D. Aaron, T. Zawodzinski, M.J.J.o.T.E.S. Mench, In situ potential distribution measurement and validated model for all-vanadium redox flow battery, 163 (2015) A5188.</description><identifier>ISSN: 2151-2043</identifier><identifier>EISSN: 2151-2035</identifier><identifier>DOI: 10.1149/MA2023-01251678mtgabs</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>Meeting abstracts (Electrochemical Society), 2023-08, Vol.MA2023-01 (25), p.1678-1678</ispartof><rights>2023 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2703-6041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/MA2023-01251678mtgabs/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1149/MA2023-01251678mtgabs$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Alhammadi, Ayoob</creatorcontrib><creatorcontrib>Fetyan, Abdulmonem</creatorcontrib><creatorcontrib>Susantyoko, Rahmat Agung</creatorcontrib><creatorcontrib>Bamgbopa, Musbaudeen O.</creatorcontrib><title>Understanding Characteristic Electrochemical Impedance Spectra of Redox Flow Batteries with Multiphysics Modelling</title><title>Meeting abstracts (Electrochemical Society)</title><addtitle>Meet. Abstr</addtitle><description>Abstract Electrochemical impedance spectroscopy (EIS) is a non-destructive technique for analyzing electrochemical systems (such as redox flow batteries – RFBs). Battery researchers widely adopt equivalent circuit models (ECMs) to analyze EIS spectra of RFBs and attempt to use the circuit to deduce prevalent transport and kinetic properties [1]. Straightforward adoption of these ECMs suffers from some setbacks which need rectifying. There is a major issue of poor or inconsistent physical interpretation of the different circuit elements. ECMs of batteries are commonly used in real-time applications due to their simplicity and importance for determining properties like state-of-charge. However, prediction performance in low state-of-charge areas has to be improved [2], which reinforces the need to relate recorded spectra to the physical properties of cell components. Using an experimentally validated full Multiphysics model of single-cell vanadium RFB analyzed in the frequency domain, we approach understanding the EIS spectra characteristics based on the influence of cell features and operating parameters. To achieve our analyses, we investigate the effects of different cell properties and operating parameters on the Multiphysics model produced EIS spectra and the resulting ECM circuit element parameters that fit the spectra. Five different values for each cell property or operating parameter are considered for the following components: Electrode: Electrical conductivity, porosity vis a vie specific surface area and hydraulic permeability, reaction rate constants for the positive and negative sides. Membrane: Ionic conductivity, fixed charge concentration, porosity, and hydraulic permeability. Electrolyte: State-of-charge, Composition vis a vie bulk diffusion coefficients of species, density, and viscosity. References [1] A.K. Tripathi, D. Choudhury, M.E. Joy, M.J.J.o.T.E.S. Neergat, Electrochemical Impedance Spectroscopic Investigation of Vanadium Redox Flow Battery, 169 (2022) 050513. [2] Y.A. Gandomi, D. Aaron, T. Zawodzinski, M.J.J.o.T.E.S. Mench, In situ potential distribution measurement and validated model for all-vanadium redox flow battery, 163 (2015) A5188.</description><issn>2151-2043</issn><issn>2151-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKw0AQhhdRsFYfQdgXiO4pzeayllYLLYLV6zDdQ7MlyYbdLdW3N6UieOXVDAzfzPwfQveUPFAqysf1lBHGM0JZTieFbNMOtvECjRjNacYIzy9_e8Gv0U2Me0K4lIyNUPjotAkxQaddt8OzGgKoZIKLySk8b4xKwavatE5Bg5dtbzR0yuBNf5oA9ha_Ge0_8aLxR_wE6cSaiI8u1Xh9aJLr66_oVMRrr03TDEdu0ZWFJpq7nzpGm8X8ffaSrV6fl7PpKlNSxiwXTEtihZhsoSiVIqWlwAthlWFGlCC4Aas5ZSUfwoNmllFZgFVbo4dofIzy81YVfIzB2KoProXwVVFSnbRVZ23VX20DR8-c832194fQDT_-w3wDDjJ1JQ</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Alhammadi, Ayoob</creator><creator>Fetyan, Abdulmonem</creator><creator>Susantyoko, Rahmat Agung</creator><creator>Bamgbopa, Musbaudeen O.</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2703-6041</orcidid></search><sort><creationdate>20230828</creationdate><title>Understanding Characteristic Electrochemical Impedance Spectra of Redox Flow Batteries with Multiphysics Modelling</title><author>Alhammadi, Ayoob ; Fetyan, Abdulmonem ; Susantyoko, Rahmat Agung ; Bamgbopa, Musbaudeen O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c88s-542d80f446ba79cc09f1a374fce2e49a43eafd31293023ad2f2187afcbed8823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Alhammadi, Ayoob</creatorcontrib><creatorcontrib>Fetyan, Abdulmonem</creatorcontrib><creatorcontrib>Susantyoko, Rahmat Agung</creatorcontrib><creatorcontrib>Bamgbopa, Musbaudeen O.</creatorcontrib><collection>CrossRef</collection><jtitle>Meeting abstracts (Electrochemical Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alhammadi, Ayoob</au><au>Fetyan, Abdulmonem</au><au>Susantyoko, Rahmat Agung</au><au>Bamgbopa, Musbaudeen O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Characteristic Electrochemical Impedance Spectra of Redox Flow Batteries with Multiphysics Modelling</atitle><jtitle>Meeting abstracts (Electrochemical Society)</jtitle><addtitle>Meet. Abstr</addtitle><date>2023-08-28</date><risdate>2023</risdate><volume>MA2023-01</volume><issue>25</issue><spage>1678</spage><epage>1678</epage><pages>1678-1678</pages><issn>2151-2043</issn><eissn>2151-2035</eissn><abstract>Abstract Electrochemical impedance spectroscopy (EIS) is a non-destructive technique for analyzing electrochemical systems (such as redox flow batteries – RFBs). Battery researchers widely adopt equivalent circuit models (ECMs) to analyze EIS spectra of RFBs and attempt to use the circuit to deduce prevalent transport and kinetic properties [1]. Straightforward adoption of these ECMs suffers from some setbacks which need rectifying. There is a major issue of poor or inconsistent physical interpretation of the different circuit elements. ECMs of batteries are commonly used in real-time applications due to their simplicity and importance for determining properties like state-of-charge. However, prediction performance in low state-of-charge areas has to be improved [2], which reinforces the need to relate recorded spectra to the physical properties of cell components. Using an experimentally validated full Multiphysics model of single-cell vanadium RFB analyzed in the frequency domain, we approach understanding the EIS spectra characteristics based on the influence of cell features and operating parameters. To achieve our analyses, we investigate the effects of different cell properties and operating parameters on the Multiphysics model produced EIS spectra and the resulting ECM circuit element parameters that fit the spectra. Five different values for each cell property or operating parameter are considered for the following components: Electrode: Electrical conductivity, porosity vis a vie specific surface area and hydraulic permeability, reaction rate constants for the positive and negative sides. Membrane: Ionic conductivity, fixed charge concentration, porosity, and hydraulic permeability. Electrolyte: State-of-charge, Composition vis a vie bulk diffusion coefficients of species, density, and viscosity. References [1] A.K. Tripathi, D. Choudhury, M.E. Joy, M.J.J.o.T.E.S. Neergat, Electrochemical Impedance Spectroscopic Investigation of Vanadium Redox Flow Battery, 169 (2022) 050513. [2] Y.A. Gandomi, D. Aaron, T. Zawodzinski, M.J.J.o.T.E.S. Mench, In situ potential distribution measurement and validated model for all-vanadium redox flow battery, 163 (2015) A5188.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/MA2023-01251678mtgabs</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2703-6041</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2043
ispartof Meeting abstracts (Electrochemical Society), 2023-08, Vol.MA2023-01 (25), p.1678-1678
issn 2151-2043
2151-2035
language eng
recordid cdi_iop_journals_10_1149_MA2023_01251678mtgabs
source IOP Journals (Institute Of Physics)
title Understanding Characteristic Electrochemical Impedance Spectra of Redox Flow Batteries with Multiphysics Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Characteristic%20Electrochemical%20Impedance%20Spectra%20of%20Redox%20Flow%20Batteries%20with%20Multiphysics%20Modelling&rft.jtitle=Meeting%20abstracts%20(Electrochemical%20Society)&rft.au=Alhammadi,%20Ayoob&rft.date=2023-08-28&rft.volume=MA2023-01&rft.issue=25&rft.spage=1678&rft.epage=1678&rft.pages=1678-1678&rft.issn=2151-2043&rft.eissn=2151-2035&rft_id=info:doi/10.1149/MA2023-01251678mtgabs&rft_dat=%3Ciop_O3W%3E1678%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true