Modeling Mechanical Behavior of Membranes in Proton Exchange Membrane Water Electrolysis

The reliability of a proton exchange membrane water electrolysis (PEMWE) depends significantly on the long-term mechanical stability of the membrane due to its relatively low mechanical robustness . Membrane defects can be caused, for example, by severe mechanical stress in the critical gap between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2022-10, Vol.MA2022-02 (50), p.2438-2438
Hauptverfasser: Kink, Julian, Ise, Martin, Bensmann, Boris, Hanke-Rauschenbach, Richard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2438
container_issue 50
container_start_page 2438
container_title Meeting abstracts (Electrochemical Society)
container_volume MA2022-02
creator Kink, Julian
Ise, Martin
Bensmann, Boris
Hanke-Rauschenbach, Richard
description The reliability of a proton exchange membrane water electrolysis (PEMWE) depends significantly on the long-term mechanical stability of the membrane due to its relatively low mechanical robustness . Membrane defects can be caused, for example, by severe mechanical stress in the critical gap between the cell frame and the porous transport layer (PTL). In this work the mechanical stresses and strains are quantified for such scenarios by using a finite element (FE) analysis which is applied to a simplified model setup. Nafion® is used as a standard material for the membrane and an appropriate material model is implemented into a FE software. The used parameters are based on and validated by experimental data from tensile tests to ensure matching with real PEMWE systems. The validated material model is used in the cell simulation to identify resulting stresses and strains during assembly and operation. In accordance with experimental experience, no critical states were identified. Furthermore, differential pressure up to 10 bar in the model could not cause any significant change compared to deformations resulting from boundary conditions for balanced pressure operation. Varying the gap size between the cell frame and PTL resulted in a buckling in the simulated membrane for sizes of 0.3 mm and more during membrane swelling.
doi_str_mv 10.1149/MA2022-02502438mtgabs
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_journals_10_1149_MA2022_02502438mtgabs</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c88s-89ac1280085ad1f3cda9f550bf113edd5734b84d420adbf8560bcf54cc8e7d483</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFYfQdgXiM6e7OaylmiFBr0o6F3Y7CHdkmTLbhT79qZUCl55NcP88w3Dh9AtgTtCeH5fzilQmgEVQDmT3dCoOp2hCSWCZBSYOD_1nF2iq5S2AExKSifoowzGtr5vcGn1RvVeqxY_2o368iHi4MZxV0fV24R9j99iGEKPi-_DamNPIX5Xg424aK0eYmj3yadrdOFUm-zNb52i9VOxXiyz1evzy2K-yrSUKZO50oRKACmUIY5po3InBNSOEGaNETPGa8kNp6BM7aR4gFo7wbWWdma4ZFMkjmd1DClF66pd9J2K-4pAdbBTHe1Uf-2MHDlyPuyqbfiM_fjkP8wPG8Bqxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Mechanical Behavior of Membranes in Proton Exchange Membrane Water Electrolysis</title><source>IOP Publishing Free Content</source><creator>Kink, Julian ; Ise, Martin ; Bensmann, Boris ; Hanke-Rauschenbach, Richard</creator><creatorcontrib>Kink, Julian ; Ise, Martin ; Bensmann, Boris ; Hanke-Rauschenbach, Richard</creatorcontrib><description>The reliability of a proton exchange membrane water electrolysis (PEMWE) depends significantly on the long-term mechanical stability of the membrane due to its relatively low mechanical robustness . Membrane defects can be caused, for example, by severe mechanical stress in the critical gap between the cell frame and the porous transport layer (PTL). In this work the mechanical stresses and strains are quantified for such scenarios by using a finite element (FE) analysis which is applied to a simplified model setup. Nafion® is used as a standard material for the membrane and an appropriate material model is implemented into a FE software. The used parameters are based on and validated by experimental data from tensile tests to ensure matching with real PEMWE systems. The validated material model is used in the cell simulation to identify resulting stresses and strains during assembly and operation. In accordance with experimental experience, no critical states were identified. Furthermore, differential pressure up to 10 bar in the model could not cause any significant change compared to deformations resulting from boundary conditions for balanced pressure operation. Varying the gap size between the cell frame and PTL resulted in a buckling in the simulated membrane for sizes of 0.3 mm and more during membrane swelling.</description><identifier>ISSN: 2151-2043</identifier><identifier>EISSN: 2151-2035</identifier><identifier>DOI: 10.1149/MA2022-02502438mtgabs</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>Meeting abstracts (Electrochemical Society), 2022-10, Vol.MA2022-02 (50), p.2438-2438</ispartof><rights>2022 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1958-307X ; 0000-0001-8685-7192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/MA2022-02502438mtgabs/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38871,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1149/MA2022-02502438mtgabs$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Kink, Julian</creatorcontrib><creatorcontrib>Ise, Martin</creatorcontrib><creatorcontrib>Bensmann, Boris</creatorcontrib><creatorcontrib>Hanke-Rauschenbach, Richard</creatorcontrib><title>Modeling Mechanical Behavior of Membranes in Proton Exchange Membrane Water Electrolysis</title><title>Meeting abstracts (Electrochemical Society)</title><addtitle>Meet. Abstr</addtitle><description>The reliability of a proton exchange membrane water electrolysis (PEMWE) depends significantly on the long-term mechanical stability of the membrane due to its relatively low mechanical robustness . Membrane defects can be caused, for example, by severe mechanical stress in the critical gap between the cell frame and the porous transport layer (PTL). In this work the mechanical stresses and strains are quantified for such scenarios by using a finite element (FE) analysis which is applied to a simplified model setup. Nafion® is used as a standard material for the membrane and an appropriate material model is implemented into a FE software. The used parameters are based on and validated by experimental data from tensile tests to ensure matching with real PEMWE systems. The validated material model is used in the cell simulation to identify resulting stresses and strains during assembly and operation. In accordance with experimental experience, no critical states were identified. Furthermore, differential pressure up to 10 bar in the model could not cause any significant change compared to deformations resulting from boundary conditions for balanced pressure operation. Varying the gap size between the cell frame and PTL resulted in a buckling in the simulated membrane for sizes of 0.3 mm and more during membrane swelling.</description><issn>2151-2043</issn><issn>2151-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKw0AQhhdRsFYfQdgXiM6e7OaylmiFBr0o6F3Y7CHdkmTLbhT79qZUCl55NcP88w3Dh9AtgTtCeH5fzilQmgEVQDmT3dCoOp2hCSWCZBSYOD_1nF2iq5S2AExKSifoowzGtr5vcGn1RvVeqxY_2o368iHi4MZxV0fV24R9j99iGEKPi-_DamNPIX5Xg424aK0eYmj3yadrdOFUm-zNb52i9VOxXiyz1evzy2K-yrSUKZO50oRKACmUIY5po3InBNSOEGaNETPGa8kNp6BM7aR4gFo7wbWWdma4ZFMkjmd1DClF66pd9J2K-4pAdbBTHe1Uf-2MHDlyPuyqbfiM_fjkP8wPG8Bqxg</recordid><startdate>20221009</startdate><enddate>20221009</enddate><creator>Kink, Julian</creator><creator>Ise, Martin</creator><creator>Bensmann, Boris</creator><creator>Hanke-Rauschenbach, Richard</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1958-307X</orcidid><orcidid>https://orcid.org/0000-0001-8685-7192</orcidid></search><sort><creationdate>20221009</creationdate><title>Modeling Mechanical Behavior of Membranes in Proton Exchange Membrane Water Electrolysis</title><author>Kink, Julian ; Ise, Martin ; Bensmann, Boris ; Hanke-Rauschenbach, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c88s-89ac1280085ad1f3cda9f550bf113edd5734b84d420adbf8560bcf54cc8e7d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kink, Julian</creatorcontrib><creatorcontrib>Ise, Martin</creatorcontrib><creatorcontrib>Bensmann, Boris</creatorcontrib><creatorcontrib>Hanke-Rauschenbach, Richard</creatorcontrib><collection>CrossRef</collection><jtitle>Meeting abstracts (Electrochemical Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kink, Julian</au><au>Ise, Martin</au><au>Bensmann, Boris</au><au>Hanke-Rauschenbach, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Mechanical Behavior of Membranes in Proton Exchange Membrane Water Electrolysis</atitle><jtitle>Meeting abstracts (Electrochemical Society)</jtitle><addtitle>Meet. Abstr</addtitle><date>2022-10-09</date><risdate>2022</risdate><volume>MA2022-02</volume><issue>50</issue><spage>2438</spage><epage>2438</epage><pages>2438-2438</pages><issn>2151-2043</issn><eissn>2151-2035</eissn><abstract>The reliability of a proton exchange membrane water electrolysis (PEMWE) depends significantly on the long-term mechanical stability of the membrane due to its relatively low mechanical robustness . Membrane defects can be caused, for example, by severe mechanical stress in the critical gap between the cell frame and the porous transport layer (PTL). In this work the mechanical stresses and strains are quantified for such scenarios by using a finite element (FE) analysis which is applied to a simplified model setup. Nafion® is used as a standard material for the membrane and an appropriate material model is implemented into a FE software. The used parameters are based on and validated by experimental data from tensile tests to ensure matching with real PEMWE systems. The validated material model is used in the cell simulation to identify resulting stresses and strains during assembly and operation. In accordance with experimental experience, no critical states were identified. Furthermore, differential pressure up to 10 bar in the model could not cause any significant change compared to deformations resulting from boundary conditions for balanced pressure operation. Varying the gap size between the cell frame and PTL resulted in a buckling in the simulated membrane for sizes of 0.3 mm and more during membrane swelling.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/MA2022-02502438mtgabs</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1958-307X</orcidid><orcidid>https://orcid.org/0000-0001-8685-7192</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2043
ispartof Meeting abstracts (Electrochemical Society), 2022-10, Vol.MA2022-02 (50), p.2438-2438
issn 2151-2043
2151-2035
language eng
recordid cdi_iop_journals_10_1149_MA2022_02502438mtgabs
source IOP Publishing Free Content
title Modeling Mechanical Behavior of Membranes in Proton Exchange Membrane Water Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Mechanical%20Behavior%20of%20Membranes%20in%20Proton%20Exchange%20Membrane%20Water%20Electrolysis&rft.jtitle=Meeting%20abstracts%20(Electrochemical%20Society)&rft.au=Kink,%20Julian&rft.date=2022-10-09&rft.volume=MA2022-02&rft.issue=50&rft.spage=2438&rft.epage=2438&rft.pages=2438-2438&rft.issn=2151-2043&rft.eissn=2151-2035&rft_id=info:doi/10.1149/MA2022-02502438mtgabs&rft_dat=%3Ciop_O3W%3E2438%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true