Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis
Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution...
Gespeichert in:
Veröffentlicht in: | Meeting abstracts (Electrochemical Society) 2022-10, Vol.MA2022-02 (39), p.1435-1435 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1435 |
---|---|
container_issue | 39 |
container_start_page | 1435 |
container_title | Meeting abstracts (Electrochemical Society) |
container_volume | MA2022-02 |
creator | Padgett, Elliot Bender, Guido Haug, Andrew Lewinski, Krzysztof A. Sun, Fuxia Yu, Haoran Cullen, David A. Steinbach, Andrew Alia, Shaun M |
description | Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood.
Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H
2
/H
2
O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO
2
nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism. |
doi_str_mv | 10.1149/MA2022-02391435mtgabs |
format | Article |
fullrecord | <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_journals_10_1149_MA2022_02391435mtgabs</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c88s-71ecdd387f7ea643d2b841cb3e44c2ed10f1977a6c6a1595a94a235283ec128b3</originalsourceid><addsrcrecordid>eNqFkMFKAzEURYMoWKufIOQDOpr3knQyy1JrFVsUqevhTSZTUqYzJYmL-vVWK4IrV-_y4Fwuh7FrEDcAqrhdTlAgZgJlAUrqbVpTFU_YAEFDhkLq09-s5Dm7iHEjhDQGccCeppSo3cfEF7R3gb-66GOizroRf0u-9R-UfN-NOHU1v3PrQPX3g_uOv8yWfNY6m0J_aPDxkp011EZ39XOHbHU_W00fssXz_HE6WWTWmJjl4GxdS5M3uaOxkjVWRoGtpFPKoqtBNFDkOY3tmEAXmgpFKDUa6SygqeSQ6WOtDX2MwTXlLvgthX0JovwSUh6FlH-FHDg4cr7flZv-PXSHkf8wn4MdZS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</title><source>IOP Publishing</source><creator>Padgett, Elliot ; Bender, Guido ; Haug, Andrew ; Lewinski, Krzysztof A. ; Sun, Fuxia ; Yu, Haoran ; Cullen, David A. ; Steinbach, Andrew ; Alia, Shaun M</creator><creatorcontrib>Padgett, Elliot ; Bender, Guido ; Haug, Andrew ; Lewinski, Krzysztof A. ; Sun, Fuxia ; Yu, Haoran ; Cullen, David A. ; Steinbach, Andrew ; Alia, Shaun M</creatorcontrib><description>Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood.
Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H
2
/H
2
O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO
2
nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism.</description><identifier>ISSN: 2151-2043</identifier><identifier>EISSN: 2151-2035</identifier><identifier>DOI: 10.1149/MA2022-02391435mtgabs</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>Meeting abstracts (Electrochemical Society), 2022-10, Vol.MA2022-02 (39), p.1435-1435</ispartof><rights>2022 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7304-2840 ; 0000-0002-2593-7866 ; 0000-0002-7647-9383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/MA2022-02391435mtgabs/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1149/MA2022-02391435mtgabs$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Padgett, Elliot</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>Haug, Andrew</creatorcontrib><creatorcontrib>Lewinski, Krzysztof A.</creatorcontrib><creatorcontrib>Sun, Fuxia</creatorcontrib><creatorcontrib>Yu, Haoran</creatorcontrib><creatorcontrib>Cullen, David A.</creatorcontrib><creatorcontrib>Steinbach, Andrew</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><title>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</title><title>Meeting abstracts (Electrochemical Society)</title><addtitle>Meet. Abstr</addtitle><description>Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood.
Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H
2
/H
2
O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO
2
nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism.</description><issn>2151-2043</issn><issn>2151-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEURYMoWKufIOQDOpr3knQyy1JrFVsUqevhTSZTUqYzJYmL-vVWK4IrV-_y4Fwuh7FrEDcAqrhdTlAgZgJlAUrqbVpTFU_YAEFDhkLq09-s5Dm7iHEjhDQGccCeppSo3cfEF7R3gb-66GOizroRf0u-9R-UfN-NOHU1v3PrQPX3g_uOv8yWfNY6m0J_aPDxkp011EZ39XOHbHU_W00fssXz_HE6WWTWmJjl4GxdS5M3uaOxkjVWRoGtpFPKoqtBNFDkOY3tmEAXmgpFKDUa6SygqeSQ6WOtDX2MwTXlLvgthX0JovwSUh6FlH-FHDg4cr7flZv-PXSHkf8wn4MdZS8</recordid><startdate>20221009</startdate><enddate>20221009</enddate><creator>Padgett, Elliot</creator><creator>Bender, Guido</creator><creator>Haug, Andrew</creator><creator>Lewinski, Krzysztof A.</creator><creator>Sun, Fuxia</creator><creator>Yu, Haoran</creator><creator>Cullen, David A.</creator><creator>Steinbach, Andrew</creator><creator>Alia, Shaun M</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7304-2840</orcidid><orcidid>https://orcid.org/0000-0002-2593-7866</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid></search><sort><creationdate>20221009</creationdate><title>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</title><author>Padgett, Elliot ; Bender, Guido ; Haug, Andrew ; Lewinski, Krzysztof A. ; Sun, Fuxia ; Yu, Haoran ; Cullen, David A. ; Steinbach, Andrew ; Alia, Shaun M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c88s-71ecdd387f7ea643d2b841cb3e44c2ed10f1977a6c6a1595a94a235283ec128b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Padgett, Elliot</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>Haug, Andrew</creatorcontrib><creatorcontrib>Lewinski, Krzysztof A.</creatorcontrib><creatorcontrib>Sun, Fuxia</creatorcontrib><creatorcontrib>Yu, Haoran</creatorcontrib><creatorcontrib>Cullen, David A.</creatorcontrib><creatorcontrib>Steinbach, Andrew</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><collection>CrossRef</collection><jtitle>Meeting abstracts (Electrochemical Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Padgett, Elliot</au><au>Bender, Guido</au><au>Haug, Andrew</au><au>Lewinski, Krzysztof A.</au><au>Sun, Fuxia</au><au>Yu, Haoran</au><au>Cullen, David A.</au><au>Steinbach, Andrew</au><au>Alia, Shaun M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</atitle><jtitle>Meeting abstracts (Electrochemical Society)</jtitle><addtitle>Meet. Abstr</addtitle><date>2022-10-09</date><risdate>2022</risdate><volume>MA2022-02</volume><issue>39</issue><spage>1435</spage><epage>1435</epage><pages>1435-1435</pages><issn>2151-2043</issn><eissn>2151-2035</eissn><abstract>Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood.
Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H
2
/H
2
O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO
2
nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/MA2022-02391435mtgabs</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7304-2840</orcidid><orcidid>https://orcid.org/0000-0002-2593-7866</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2151-2043 |
ispartof | Meeting abstracts (Electrochemical Society), 2022-10, Vol.MA2022-02 (39), p.1435-1435 |
issn | 2151-2043 2151-2035 |
language | eng |
recordid | cdi_iop_journals_10_1149_MA2022_02391435mtgabs |
source | IOP Publishing |
title | Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalyst%20Layer%20Resistance,%20Utilization,%20and%20Degradation%20in%20PEM%20Electrolysis&rft.jtitle=Meeting%20abstracts%20(Electrochemical%20Society)&rft.au=Padgett,%20Elliot&rft.date=2022-10-09&rft.volume=MA2022-02&rft.issue=39&rft.spage=1435&rft.epage=1435&rft.pages=1435-1435&rft.issn=2151-2043&rft.eissn=2151-2035&rft_id=info:doi/10.1149/MA2022-02391435mtgabs&rft_dat=%3Ciop_O3W%3E1435%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |