Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis

Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2022-10, Vol.MA2022-02 (39), p.1435-1435
Hauptverfasser: Padgett, Elliot, Bender, Guido, Haug, Andrew, Lewinski, Krzysztof A., Sun, Fuxia, Yu, Haoran, Cullen, David A., Steinbach, Andrew, Alia, Shaun M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 39
container_start_page 1435
container_title Meeting abstracts (Electrochemical Society)
container_volume MA2022-02
creator Padgett, Elliot
Bender, Guido
Haug, Andrew
Lewinski, Krzysztof A.
Sun, Fuxia
Yu, Haoran
Cullen, David A.
Steinbach, Andrew
Alia, Shaun M
description Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood. Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H 2 /H 2 O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO 2 nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism.
doi_str_mv 10.1149/MA2022-02391435mtgabs
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_journals_10_1149_MA2022_02391435mtgabs</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c88s-71ecdd387f7ea643d2b841cb3e44c2ed10f1977a6c6a1595a94a235283ec128b3</originalsourceid><addsrcrecordid>eNqFkMFKAzEURYMoWKufIOQDOpr3knQyy1JrFVsUqevhTSZTUqYzJYmL-vVWK4IrV-_y4Fwuh7FrEDcAqrhdTlAgZgJlAUrqbVpTFU_YAEFDhkLq09-s5Dm7iHEjhDQGccCeppSo3cfEF7R3gb-66GOizroRf0u-9R-UfN-NOHU1v3PrQPX3g_uOv8yWfNY6m0J_aPDxkp011EZ39XOHbHU_W00fssXz_HE6WWTWmJjl4GxdS5M3uaOxkjVWRoGtpFPKoqtBNFDkOY3tmEAXmgpFKDUa6SygqeSQ6WOtDX2MwTXlLvgthX0JovwSUh6FlH-FHDg4cr7flZv-PXSHkf8wn4MdZS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</title><source>IOP Publishing</source><creator>Padgett, Elliot ; Bender, Guido ; Haug, Andrew ; Lewinski, Krzysztof A. ; Sun, Fuxia ; Yu, Haoran ; Cullen, David A. ; Steinbach, Andrew ; Alia, Shaun M</creator><creatorcontrib>Padgett, Elliot ; Bender, Guido ; Haug, Andrew ; Lewinski, Krzysztof A. ; Sun, Fuxia ; Yu, Haoran ; Cullen, David A. ; Steinbach, Andrew ; Alia, Shaun M</creatorcontrib><description>Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood. Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H 2 /H 2 O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO 2 nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism.</description><identifier>ISSN: 2151-2043</identifier><identifier>EISSN: 2151-2035</identifier><identifier>DOI: 10.1149/MA2022-02391435mtgabs</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>Meeting abstracts (Electrochemical Society), 2022-10, Vol.MA2022-02 (39), p.1435-1435</ispartof><rights>2022 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7304-2840 ; 0000-0002-2593-7866 ; 0000-0002-7647-9383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/MA2022-02391435mtgabs/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1149/MA2022-02391435mtgabs$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Padgett, Elliot</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>Haug, Andrew</creatorcontrib><creatorcontrib>Lewinski, Krzysztof A.</creatorcontrib><creatorcontrib>Sun, Fuxia</creatorcontrib><creatorcontrib>Yu, Haoran</creatorcontrib><creatorcontrib>Cullen, David A.</creatorcontrib><creatorcontrib>Steinbach, Andrew</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><title>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</title><title>Meeting abstracts (Electrochemical Society)</title><addtitle>Meet. Abstr</addtitle><description>Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood. Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H 2 /H 2 O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO 2 nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism.</description><issn>2151-2043</issn><issn>2151-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEURYMoWKufIOQDOpr3knQyy1JrFVsUqevhTSZTUqYzJYmL-vVWK4IrV-_y4Fwuh7FrEDcAqrhdTlAgZgJlAUrqbVpTFU_YAEFDhkLq09-s5Dm7iHEjhDQGccCeppSo3cfEF7R3gb-66GOizroRf0u-9R-UfN-NOHU1v3PrQPX3g_uOv8yWfNY6m0J_aPDxkp011EZ39XOHbHU_W00fssXz_HE6WWTWmJjl4GxdS5M3uaOxkjVWRoGtpFPKoqtBNFDkOY3tmEAXmgpFKDUa6SygqeSQ6WOtDX2MwTXlLvgthX0JovwSUh6FlH-FHDg4cr7flZv-PXSHkf8wn4MdZS8</recordid><startdate>20221009</startdate><enddate>20221009</enddate><creator>Padgett, Elliot</creator><creator>Bender, Guido</creator><creator>Haug, Andrew</creator><creator>Lewinski, Krzysztof A.</creator><creator>Sun, Fuxia</creator><creator>Yu, Haoran</creator><creator>Cullen, David A.</creator><creator>Steinbach, Andrew</creator><creator>Alia, Shaun M</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7304-2840</orcidid><orcidid>https://orcid.org/0000-0002-2593-7866</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid></search><sort><creationdate>20221009</creationdate><title>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</title><author>Padgett, Elliot ; Bender, Guido ; Haug, Andrew ; Lewinski, Krzysztof A. ; Sun, Fuxia ; Yu, Haoran ; Cullen, David A. ; Steinbach, Andrew ; Alia, Shaun M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c88s-71ecdd387f7ea643d2b841cb3e44c2ed10f1977a6c6a1595a94a235283ec128b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Padgett, Elliot</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>Haug, Andrew</creatorcontrib><creatorcontrib>Lewinski, Krzysztof A.</creatorcontrib><creatorcontrib>Sun, Fuxia</creatorcontrib><creatorcontrib>Yu, Haoran</creatorcontrib><creatorcontrib>Cullen, David A.</creatorcontrib><creatorcontrib>Steinbach, Andrew</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><collection>CrossRef</collection><jtitle>Meeting abstracts (Electrochemical Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Padgett, Elliot</au><au>Bender, Guido</au><au>Haug, Andrew</au><au>Lewinski, Krzysztof A.</au><au>Sun, Fuxia</au><au>Yu, Haoran</au><au>Cullen, David A.</au><au>Steinbach, Andrew</au><au>Alia, Shaun M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis</atitle><jtitle>Meeting abstracts (Electrochemical Society)</jtitle><addtitle>Meet. Abstr</addtitle><date>2022-10-09</date><risdate>2022</risdate><volume>MA2022-02</volume><issue>39</issue><spage>1435</spage><epage>1435</epage><pages>1435-1435</pages><issn>2151-2043</issn><eissn>2151-2035</eissn><abstract>Proton exchange membrane (PEM) electrolysis is a promising route for renewable hydrogen production. However, to enable widespread, low-cost hydrogen generation, PEM electrolyzers must make advances in performance and durability with greatly decreased loadings of iridium as the anode oxygen evolution catalyst. The ionic and electronic resistance of the anode catalyst layer is an important consideration, as high internal resistance lowers catalyst utilization and cell performance while accelerating degradation. Catalyst layer resistance (CLR) is relatively well-understood in fuel cells and other porous electrode systems. However, characterization of CLR is not routinely used in the PEM electrolysis community, and the impacts of CLR for PEM electrolysis are not widely understood. Here we will present in-situ methods for measuring CLR in electrolysis cells using a non-faradaic H 2 /H 2 O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO 2 nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends of CLR, performance, and durability with electrode properties such as loading and interactions between the porous transport layer and catalyst layer will be discussed. We will also present investigation of characteristic uneven degradation of the catalyst layer caused by CLR and strategies for mitigating this degradation mechanism.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/MA2022-02391435mtgabs</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7304-2840</orcidid><orcidid>https://orcid.org/0000-0002-2593-7866</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2043
ispartof Meeting abstracts (Electrochemical Society), 2022-10, Vol.MA2022-02 (39), p.1435-1435
issn 2151-2043
2151-2035
language eng
recordid cdi_iop_journals_10_1149_MA2022_02391435mtgabs
source IOP Publishing
title Catalyst Layer Resistance, Utilization, and Degradation in PEM Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalyst%20Layer%20Resistance,%20Utilization,%20and%20Degradation%20in%20PEM%20Electrolysis&rft.jtitle=Meeting%20abstracts%20(Electrochemical%20Society)&rft.au=Padgett,%20Elliot&rft.date=2022-10-09&rft.volume=MA2022-02&rft.issue=39&rft.spage=1435&rft.epage=1435&rft.pages=1435-1435&rft.issn=2151-2043&rft.eissn=2151-2035&rft_id=info:doi/10.1149/MA2022-02391435mtgabs&rft_dat=%3Ciop_O3W%3E1435%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true