V2O5/C3H6N6: A Hybrid Material with Reversible Lithium Intercalation/Deintercalation in a Wide Potential Range

The (C3H6N6)0.67V2O5 hybrid nanorods are synthesized through the self-assembly of melamine organic molecules confined by V2O5 layers and used as cathode material in the lithium-ion battery. The prepared hybrid overcomes the irreversible structure puckering problem of LixV2O5 when excess Li+, x >...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2017-01, Vol.164 (13), p.A3191-A3195
Hauptverfasser: Chandan, Prem, Chen, Yen Ting, Hsu, Tsong Ming, Lin, Yu Min, Wu, Maw Kuen, Chang, Hua Shu, Chang, Chung Chieh, Sheu, Hwo Shuenn, Tang, Horng Yi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A3195
container_issue 13
container_start_page A3191
container_title Journal of the Electrochemical Society
container_volume 164
creator Chandan, Prem
Chen, Yen Ting
Hsu, Tsong Ming
Lin, Yu Min
Wu, Maw Kuen
Chang, Hua Shu
Chang, Chung Chieh
Sheu, Hwo Shuenn
Tang, Horng Yi
description The (C3H6N6)0.67V2O5 hybrid nanorods are synthesized through the self-assembly of melamine organic molecules confined by V2O5 layers and used as cathode material in the lithium-ion battery. The prepared hybrid overcomes the irreversible structure puckering problem of LixV2O5 when excess Li+, x > 1, is intercalated. It demonstrates that layered oxides combined with selective organic moieties forming an ordered structure can significantly reduce the lattice stress and structure puckering problems during lithium intercalation/deintercalation process thereby extending their cycle reversibility in the wide potential range from 1.9 to 3.5 V and reaching to x = 2 of Lix(C3H6N6)0.67V2O5. The hybrid material developed in this work tackles the structure puckering problem of V2O5 layers and opens the door for studying new battery system with greater ionic radii, such as Na+, Mg2+ and Al3+.
doi_str_mv 10.1149/2.1201713jes
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_1201713jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1201713JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-i188t-f7eb118dd3d4dcbfad6e22dcc8790318be9edc2e3b80958f498018e1562834e33</originalsourceid><addsrcrecordid>eNpNkE1LxDAYhIMguK7e_AE5eulu3iRtU29L_ehCdWXx41iS5q2m1FTarOK_t4uCnoaB4ZlhCDkDtgCQ2ZIvgDNIQbQ4HpAZZDKOUgA4Isfj2DIGoGQ6I_6Jb-JlLorkLrmgK1p8mcFZeqsDDk539NOFV7rFDxxGZzqk5eTd7o2u_RSodaeD6_3yEt1_T52nmj47i_S-D-jDnrTV_gVPyGGjuxFPf3VOHq-vHvIiKjc363xVRg6UClGTopkGWiustLVptE2Qc1vXKs2YAGUwQ1tzFEaxLFaNzBQDhRAnXAmJQszJ-Q_X9e9V2-8GP7VVwKr9NxWv_r4R36qAWU0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>V2O5/C3H6N6: A Hybrid Material with Reversible Lithium Intercalation/Deintercalation in a Wide Potential Range</title><source>IOP Publishing Journals</source><creator>Chandan, Prem ; Chen, Yen Ting ; Hsu, Tsong Ming ; Lin, Yu Min ; Wu, Maw Kuen ; Chang, Hua Shu ; Chang, Chung Chieh ; Sheu, Hwo Shuenn ; Tang, Horng Yi</creator><creatorcontrib>Chandan, Prem ; Chen, Yen Ting ; Hsu, Tsong Ming ; Lin, Yu Min ; Wu, Maw Kuen ; Chang, Hua Shu ; Chang, Chung Chieh ; Sheu, Hwo Shuenn ; Tang, Horng Yi</creatorcontrib><description>The (C3H6N6)0.67V2O5 hybrid nanorods are synthesized through the self-assembly of melamine organic molecules confined by V2O5 layers and used as cathode material in the lithium-ion battery. The prepared hybrid overcomes the irreversible structure puckering problem of LixV2O5 when excess Li+, x &gt; 1, is intercalated. It demonstrates that layered oxides combined with selective organic moieties forming an ordered structure can significantly reduce the lattice stress and structure puckering problems during lithium intercalation/deintercalation process thereby extending their cycle reversibility in the wide potential range from 1.9 to 3.5 V and reaching to x = 2 of Lix(C3H6N6)0.67V2O5. The hybrid material developed in this work tackles the structure puckering problem of V2O5 layers and opens the door for studying new battery system with greater ionic radii, such as Na+, Mg2+ and Al3+.</description><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.1201713jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2017-01, Vol.164 (13), p.A3191-A3195</ispartof><rights>2017 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.1201713jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844</link.rule.ids></links><search><creatorcontrib>Chandan, Prem</creatorcontrib><creatorcontrib>Chen, Yen Ting</creatorcontrib><creatorcontrib>Hsu, Tsong Ming</creatorcontrib><creatorcontrib>Lin, Yu Min</creatorcontrib><creatorcontrib>Wu, Maw Kuen</creatorcontrib><creatorcontrib>Chang, Hua Shu</creatorcontrib><creatorcontrib>Chang, Chung Chieh</creatorcontrib><creatorcontrib>Sheu, Hwo Shuenn</creatorcontrib><creatorcontrib>Tang, Horng Yi</creatorcontrib><title>V2O5/C3H6N6: A Hybrid Material with Reversible Lithium Intercalation/Deintercalation in a Wide Potential Range</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>The (C3H6N6)0.67V2O5 hybrid nanorods are synthesized through the self-assembly of melamine organic molecules confined by V2O5 layers and used as cathode material in the lithium-ion battery. The prepared hybrid overcomes the irreversible structure puckering problem of LixV2O5 when excess Li+, x &gt; 1, is intercalated. It demonstrates that layered oxides combined with selective organic moieties forming an ordered structure can significantly reduce the lattice stress and structure puckering problems during lithium intercalation/deintercalation process thereby extending their cycle reversibility in the wide potential range from 1.9 to 3.5 V and reaching to x = 2 of Lix(C3H6N6)0.67V2O5. The hybrid material developed in this work tackles the structure puckering problem of V2O5 layers and opens the door for studying new battery system with greater ionic radii, such as Na+, Mg2+ and Al3+.</description><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkE1LxDAYhIMguK7e_AE5eulu3iRtU29L_ehCdWXx41iS5q2m1FTarOK_t4uCnoaB4ZlhCDkDtgCQ2ZIvgDNIQbQ4HpAZZDKOUgA4Isfj2DIGoGQ6I_6Jb-JlLorkLrmgK1p8mcFZeqsDDk539NOFV7rFDxxGZzqk5eTd7o2u_RSodaeD6_3yEt1_T52nmj47i_S-D-jDnrTV_gVPyGGjuxFPf3VOHq-vHvIiKjc363xVRg6UClGTopkGWiustLVptE2Qc1vXKs2YAGUwQ1tzFEaxLFaNzBQDhRAnXAmJQszJ-Q_X9e9V2-8GP7VVwKr9NxWv_r4R36qAWU0</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Chandan, Prem</creator><creator>Chen, Yen Ting</creator><creator>Hsu, Tsong Ming</creator><creator>Lin, Yu Min</creator><creator>Wu, Maw Kuen</creator><creator>Chang, Hua Shu</creator><creator>Chang, Chung Chieh</creator><creator>Sheu, Hwo Shuenn</creator><creator>Tang, Horng Yi</creator><general>The Electrochemical Society</general><scope/></search><sort><creationdate>201701</creationdate><title>V2O5/C3H6N6: A Hybrid Material with Reversible Lithium Intercalation/Deintercalation in a Wide Potential Range</title><author>Chandan, Prem ; Chen, Yen Ting ; Hsu, Tsong Ming ; Lin, Yu Min ; Wu, Maw Kuen ; Chang, Hua Shu ; Chang, Chung Chieh ; Sheu, Hwo Shuenn ; Tang, Horng Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i188t-f7eb118dd3d4dcbfad6e22dcc8790318be9edc2e3b80958f498018e1562834e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandan, Prem</creatorcontrib><creatorcontrib>Chen, Yen Ting</creatorcontrib><creatorcontrib>Hsu, Tsong Ming</creatorcontrib><creatorcontrib>Lin, Yu Min</creatorcontrib><creatorcontrib>Wu, Maw Kuen</creatorcontrib><creatorcontrib>Chang, Hua Shu</creatorcontrib><creatorcontrib>Chang, Chung Chieh</creatorcontrib><creatorcontrib>Sheu, Hwo Shuenn</creatorcontrib><creatorcontrib>Tang, Horng Yi</creatorcontrib><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandan, Prem</au><au>Chen, Yen Ting</au><au>Hsu, Tsong Ming</au><au>Lin, Yu Min</au><au>Wu, Maw Kuen</au><au>Chang, Hua Shu</au><au>Chang, Chung Chieh</au><au>Sheu, Hwo Shuenn</au><au>Tang, Horng Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>V2O5/C3H6N6: A Hybrid Material with Reversible Lithium Intercalation/Deintercalation in a Wide Potential Range</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2017-01</date><risdate>2017</risdate><volume>164</volume><issue>13</issue><spage>A3191</spage><epage>A3195</epage><pages>A3191-A3195</pages><eissn>1945-7111</eissn><abstract>The (C3H6N6)0.67V2O5 hybrid nanorods are synthesized through the self-assembly of melamine organic molecules confined by V2O5 layers and used as cathode material in the lithium-ion battery. The prepared hybrid overcomes the irreversible structure puckering problem of LixV2O5 when excess Li+, x &gt; 1, is intercalated. It demonstrates that layered oxides combined with selective organic moieties forming an ordered structure can significantly reduce the lattice stress and structure puckering problems during lithium intercalation/deintercalation process thereby extending their cycle reversibility in the wide potential range from 1.9 to 3.5 V and reaching to x = 2 of Lix(C3H6N6)0.67V2O5. The hybrid material developed in this work tackles the structure puckering problem of V2O5 layers and opens the door for studying new battery system with greater ionic radii, such as Na+, Mg2+ and Al3+.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.1201713jes</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1945-7111
ispartof Journal of the Electrochemical Society, 2017-01, Vol.164 (13), p.A3191-A3195
issn 1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_1201713jes
source IOP Publishing Journals
title V2O5/C3H6N6: A Hybrid Material with Reversible Lithium Intercalation/Deintercalation in a Wide Potential Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=V2O5/C3H6N6:%20A%20Hybrid%20Material%20with%20Reversible%20Lithium%20Intercalation/Deintercalation%20in%20a%20Wide%20Potential%20Range&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Chandan,%20Prem&rft.date=2017-01&rft.volume=164&rft.issue=13&rft.spage=A3191&rft.epage=A3195&rft.pages=A3191-A3195&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.1201713jes&rft_dat=%3Ciop%3E1201713JES%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true