RuO2-Doped Anodic TiO2 Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method

Simultaneous single-step anodization (SSA) or potential shock (PS) were performed for ruthenium/ruthenium oxide doping into anodic TiO2 nanotubes, which can be used in an oxygen evolution reaction (OER) in KOH. Regardless of the electrolyte type, SSA allows for the formation of nanotube walls more t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2017-01, Vol.164 (2), p.H104-H111
Hauptverfasser: Yoo, Hyeonseok, Oh, Kiseok, Lee, Gibaek, Choi, Jinsub
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H111
container_issue 2
container_start_page H104
container_title Journal of the Electrochemical Society
container_volume 164
creator Yoo, Hyeonseok
Oh, Kiseok
Lee, Gibaek
Choi, Jinsub
description Simultaneous single-step anodization (SSA) or potential shock (PS) were performed for ruthenium/ruthenium oxide doping into anodic TiO2 nanotubes, which can be used in an oxygen evolution reaction (OER) in KOH. Regardless of the electrolyte type, SSA allows for the formation of nanotube walls more than twice as thick as other methods, leading to increased stability in the electrolyte. As a result, formation of nanograss is suppressed even after prolonged anodization. However, the SSA method exhibits a high onset potential for OER, whereas a newly grown barrier oxide is formed in PS. As a higher PS voltage is applied, a greater amount of ruthenium/ruthenium oxide is doped into TiO2 and a thicker barrier oxide is formed. Thus, optimization of PS voltage is required for each sample. The amount of ruthenium in TiO2 depends on the electrolyte used rather than the doping method: a higher amount of Ru in TiO2 is generally obtained in aqueous electrolytes compared to non-aqueous electrolytes. Empirical equation for maximum OER current density was deduced in terms of the total surface area of nanotubes, concentration of ruthenium, and barrier oxide thickness.
doi_str_mv 10.1149/2.1201702jes
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_1201702jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1201702JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-i188t-f76f4a2833900006877747a3f165dd6b7112c7039c648e79668c6f931909cb7c3</originalsourceid><addsrcrecordid>eNpFUM1OwzAYi5CQGIMbD5Ajl458SZcfbtOAgTQookMcqzRNt5QqqdYUIZ6ewpDwxQfLtmyELoDMAFJ1RWdACQhCG9sfoQmodJ4IADhBp33fEAIgUzFB25cho8lN6GyFFz5UzuCNyyh-0j7EobQ9rsMev-lo9zj7dJWOLvhrnDu_bW2SR9sdbF-_Av7o8XOI1kenW5zvgnnHjzbuQnWGjmvd9vb8j6fo9e52s7xP1tnqYblYJw6kjEkteJ1qKhlTZASXQohUaFYDn1cVL8cF1AjClOGptEJxLg2vFQNFlCmFYVN0ech1oSuaMOz92FYAKX5OKWjxfwr7BsrHVYU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RuO2-Doped Anodic TiO2 Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method</title><source>IOP Publishing Journals</source><creator>Yoo, Hyeonseok ; Oh, Kiseok ; Lee, Gibaek ; Choi, Jinsub</creator><creatorcontrib>Yoo, Hyeonseok ; Oh, Kiseok ; Lee, Gibaek ; Choi, Jinsub</creatorcontrib><description>Simultaneous single-step anodization (SSA) or potential shock (PS) were performed for ruthenium/ruthenium oxide doping into anodic TiO2 nanotubes, which can be used in an oxygen evolution reaction (OER) in KOH. Regardless of the electrolyte type, SSA allows for the formation of nanotube walls more than twice as thick as other methods, leading to increased stability in the electrolyte. As a result, formation of nanograss is suppressed even after prolonged anodization. However, the SSA method exhibits a high onset potential for OER, whereas a newly grown barrier oxide is formed in PS. As a higher PS voltage is applied, a greater amount of ruthenium/ruthenium oxide is doped into TiO2 and a thicker barrier oxide is formed. Thus, optimization of PS voltage is required for each sample. The amount of ruthenium in TiO2 depends on the electrolyte used rather than the doping method: a higher amount of Ru in TiO2 is generally obtained in aqueous electrolytes compared to non-aqueous electrolytes. Empirical equation for maximum OER current density was deduced in terms of the total surface area of nanotubes, concentration of ruthenium, and barrier oxide thickness.</description><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.1201702jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2017-01, Vol.164 (2), p.H104-H111</ispartof><rights>2017 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.1201702jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851</link.rule.ids></links><search><creatorcontrib>Yoo, Hyeonseok</creatorcontrib><creatorcontrib>Oh, Kiseok</creatorcontrib><creatorcontrib>Lee, Gibaek</creatorcontrib><creatorcontrib>Choi, Jinsub</creatorcontrib><title>RuO2-Doped Anodic TiO2 Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Simultaneous single-step anodization (SSA) or potential shock (PS) were performed for ruthenium/ruthenium oxide doping into anodic TiO2 nanotubes, which can be used in an oxygen evolution reaction (OER) in KOH. Regardless of the electrolyte type, SSA allows for the formation of nanotube walls more than twice as thick as other methods, leading to increased stability in the electrolyte. As a result, formation of nanograss is suppressed even after prolonged anodization. However, the SSA method exhibits a high onset potential for OER, whereas a newly grown barrier oxide is formed in PS. As a higher PS voltage is applied, a greater amount of ruthenium/ruthenium oxide is doped into TiO2 and a thicker barrier oxide is formed. Thus, optimization of PS voltage is required for each sample. The amount of ruthenium in TiO2 depends on the electrolyte used rather than the doping method: a higher amount of Ru in TiO2 is generally obtained in aqueous electrolytes compared to non-aqueous electrolytes. Empirical equation for maximum OER current density was deduced in terms of the total surface area of nanotubes, concentration of ruthenium, and barrier oxide thickness.</description><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFUM1OwzAYi5CQGIMbD5Ajl458SZcfbtOAgTQookMcqzRNt5QqqdYUIZ6ewpDwxQfLtmyELoDMAFJ1RWdACQhCG9sfoQmodJ4IADhBp33fEAIgUzFB25cho8lN6GyFFz5UzuCNyyh-0j7EobQ9rsMev-lo9zj7dJWOLvhrnDu_bW2SR9sdbF-_Av7o8XOI1kenW5zvgnnHjzbuQnWGjmvd9vb8j6fo9e52s7xP1tnqYblYJw6kjEkteJ1qKhlTZASXQohUaFYDn1cVL8cF1AjClOGptEJxLg2vFQNFlCmFYVN0ech1oSuaMOz92FYAKX5OKWjxfwr7BsrHVYU</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yoo, Hyeonseok</creator><creator>Oh, Kiseok</creator><creator>Lee, Gibaek</creator><creator>Choi, Jinsub</creator><general>The Electrochemical Society</general><scope/></search><sort><creationdate>20170101</creationdate><title>RuO2-Doped Anodic TiO2 Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method</title><author>Yoo, Hyeonseok ; Oh, Kiseok ; Lee, Gibaek ; Choi, Jinsub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i188t-f76f4a2833900006877747a3f165dd6b7112c7039c648e79668c6f931909cb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Hyeonseok</creatorcontrib><creatorcontrib>Oh, Kiseok</creatorcontrib><creatorcontrib>Lee, Gibaek</creatorcontrib><creatorcontrib>Choi, Jinsub</creatorcontrib><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Hyeonseok</au><au>Oh, Kiseok</au><au>Lee, Gibaek</au><au>Choi, Jinsub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RuO2-Doped Anodic TiO2 Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>164</volume><issue>2</issue><spage>H104</spage><epage>H111</epage><pages>H104-H111</pages><eissn>1945-7111</eissn><abstract>Simultaneous single-step anodization (SSA) or potential shock (PS) were performed for ruthenium/ruthenium oxide doping into anodic TiO2 nanotubes, which can be used in an oxygen evolution reaction (OER) in KOH. Regardless of the electrolyte type, SSA allows for the formation of nanotube walls more than twice as thick as other methods, leading to increased stability in the electrolyte. As a result, formation of nanograss is suppressed even after prolonged anodization. However, the SSA method exhibits a high onset potential for OER, whereas a newly grown barrier oxide is formed in PS. As a higher PS voltage is applied, a greater amount of ruthenium/ruthenium oxide is doped into TiO2 and a thicker barrier oxide is formed. Thus, optimization of PS voltage is required for each sample. The amount of ruthenium in TiO2 depends on the electrolyte used rather than the doping method: a higher amount of Ru in TiO2 is generally obtained in aqueous electrolytes compared to non-aqueous electrolytes. Empirical equation for maximum OER current density was deduced in terms of the total surface area of nanotubes, concentration of ruthenium, and barrier oxide thickness.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.1201702jes</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1945-7111
ispartof Journal of the Electrochemical Society, 2017-01, Vol.164 (2), p.H104-H111
issn 1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_1201702jes
source IOP Publishing Journals
title RuO2-Doped Anodic TiO2 Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RuO2-Doped%20Anodic%20TiO2%20Nanotubes%20for%20Water%20Oxidation:%20Single-Step%20Anodization%20vs%20Potential%20Shock%20Method&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Yoo,%20Hyeonseok&rft.date=2017-01-01&rft.volume=164&rft.issue=2&rft.spage=H104&rft.epage=H111&rft.pages=H104-H111&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.1201702jes&rft_dat=%3Ciop%3E1201702JES%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true