Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes

Lithium- and manganese-rich layered transition-metal oxide (LMR-NMC) intercalation electrodes are projected to enable batteries with high energy density and low costs for energy. However, implementation of LMR-NMC materials are challenged by life limiting mechanisms as well as less than desired rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2015-01, Vol.162 (7), p.A1374-A1381
Hauptverfasser: Gowda, Sanketh R., Dees, Dennis W., Jansen, Andrew N., Gallagher, Kevin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A1381
container_issue 7
container_start_page A1374
container_title Journal of the Electrochemical Society
container_volume 162
creator Gowda, Sanketh R.
Dees, Dennis W.
Jansen, Andrew N.
Gallagher, Kevin G.
description Lithium- and manganese-rich layered transition-metal oxide (LMR-NMC) intercalation electrodes are projected to enable batteries with high energy density and low costs for energy. However, implementation of LMR-NMC materials are challenged by life limiting mechanisms as well as less than desired rate performance. Here-in, we use electrochemical characterization of LMR-NMC electrodes to examine the large magnitude of impedance and the asymmetric polarization between charge and discharge at low states of charge (SOC). The area-specific impedance (ASI) of LMR-NMC displays a similar dependency as standard layered lithium metal oxides when compared as a function of voltage rather than SOC. Numerical physics-based modeling is used to analyze and simulate the potential response. The increasing and asymmetric behavior of the ASI in LMR-NMC at low SOC is suggested to be the result of the differing lithium diffusivities in the heterogeneous, nano-composite metal oxide material. Transport of lithium within LMR-NMC is governed by the relatively facile nickel- and cobalt-rich domains. Conversely, the mass transport within the lithium- and manganese-rich domains are characterized as comparatively sluggish. Lowering the stoichiometry of the lithium and manganese to achieve an optimal energy density at relevant discharge rates is suggested as a potentially viable path forward.
doi_str_mv 10.1149/2.0931507jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_0931507jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0931507JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ed1f1175510df65182d4eb3eb8a248cbb141650cabfa8cd99186fac641a176ef3</originalsourceid><addsrcrecordid>eNptkM1Kw0AUhQdRsFZ3PsDgyoWpufnPUkr9gZSC1nW4mblppjQzZWaK7Rv42EYqunF1uPBx7jmHsWsIJwBJeR9NwjKGNMzX5E7YCMokDXIAOGWjMIQ4SLIUztmFc-vhhCLJR-xztsdeaaVX3HfEZxsS3hrRUa8EbvhLvyWJWhBHzyvzwd88enLctHzaoV0RV5pXyndq1wccteRz1CvU5Ch4VaLjFR7IkuRLi9opr4wO5uQH58Veyd9_ktwlO2tx4-jqR8fs_XG2nD4H1eLpZfpQBSIqUx-QhBYgT1MIZTvUKSKZUBNTU2CUFKJpIIEsDQU2LRZCliUUWYsiSwAhz6iNx-zm6GucV7UTypPohNF6CFJDXEZpHA3Q3RES1jhnqa23VvVoDzWE9ffUdVT_TT3gt0dcmW29Njurhwb_o19WYH_m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes</title><source>IOP Publishing Journals</source><creator>Gowda, Sanketh R. ; Dees, Dennis W. ; Jansen, Andrew N. ; Gallagher, Kevin G.</creator><creatorcontrib>Gowda, Sanketh R. ; Dees, Dennis W. ; Jansen, Andrew N. ; Gallagher, Kevin G. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Lithium- and manganese-rich layered transition-metal oxide (LMR-NMC) intercalation electrodes are projected to enable batteries with high energy density and low costs for energy. However, implementation of LMR-NMC materials are challenged by life limiting mechanisms as well as less than desired rate performance. Here-in, we use electrochemical characterization of LMR-NMC electrodes to examine the large magnitude of impedance and the asymmetric polarization between charge and discharge at low states of charge (SOC). The area-specific impedance (ASI) of LMR-NMC displays a similar dependency as standard layered lithium metal oxides when compared as a function of voltage rather than SOC. Numerical physics-based modeling is used to analyze and simulate the potential response. The increasing and asymmetric behavior of the ASI in LMR-NMC at low SOC is suggested to be the result of the differing lithium diffusivities in the heterogeneous, nano-composite metal oxide material. Transport of lithium within LMR-NMC is governed by the relatively facile nickel- and cobalt-rich domains. Conversely, the mass transport within the lithium- and manganese-rich domains are characterized as comparatively sluggish. Lowering the stoichiometry of the lithium and manganese to achieve an optimal energy density at relevant discharge rates is suggested as a potentially viable path forward.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0931507jes</identifier><language>eng</language><publisher>United States: The Electrochemical Society</publisher><subject>intercalation ; lithium ion ; modeling</subject><ispartof>Journal of the Electrochemical Society, 2015-01, Vol.162 (7), p.A1374-A1381</ispartof><rights>2015 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ed1f1175510df65182d4eb3eb8a248cbb141650cabfa8cd99186fac641a176ef3</citedby><cites>FETCH-LOGICAL-c295t-ed1f1175510df65182d4eb3eb8a248cbb141650cabfa8cd99186fac641a176ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0931507jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1392532$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gowda, Sanketh R.</creatorcontrib><creatorcontrib>Dees, Dennis W.</creatorcontrib><creatorcontrib>Jansen, Andrew N.</creatorcontrib><creatorcontrib>Gallagher, Kevin G.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Lithium- and manganese-rich layered transition-metal oxide (LMR-NMC) intercalation electrodes are projected to enable batteries with high energy density and low costs for energy. However, implementation of LMR-NMC materials are challenged by life limiting mechanisms as well as less than desired rate performance. Here-in, we use electrochemical characterization of LMR-NMC electrodes to examine the large magnitude of impedance and the asymmetric polarization between charge and discharge at low states of charge (SOC). The area-specific impedance (ASI) of LMR-NMC displays a similar dependency as standard layered lithium metal oxides when compared as a function of voltage rather than SOC. Numerical physics-based modeling is used to analyze and simulate the potential response. The increasing and asymmetric behavior of the ASI in LMR-NMC at low SOC is suggested to be the result of the differing lithium diffusivities in the heterogeneous, nano-composite metal oxide material. Transport of lithium within LMR-NMC is governed by the relatively facile nickel- and cobalt-rich domains. Conversely, the mass transport within the lithium- and manganese-rich domains are characterized as comparatively sluggish. Lowering the stoichiometry of the lithium and manganese to achieve an optimal energy density at relevant discharge rates is suggested as a potentially viable path forward.</description><subject>intercalation</subject><subject>lithium ion</subject><subject>modeling</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkM1Kw0AUhQdRsFZ3PsDgyoWpufnPUkr9gZSC1nW4mblppjQzZWaK7Rv42EYqunF1uPBx7jmHsWsIJwBJeR9NwjKGNMzX5E7YCMokDXIAOGWjMIQ4SLIUztmFc-vhhCLJR-xztsdeaaVX3HfEZxsS3hrRUa8EbvhLvyWJWhBHzyvzwd88enLctHzaoV0RV5pXyndq1wccteRz1CvU5Ch4VaLjFR7IkuRLi9opr4wO5uQH58Veyd9_ktwlO2tx4-jqR8fs_XG2nD4H1eLpZfpQBSIqUx-QhBYgT1MIZTvUKSKZUBNTU2CUFKJpIIEsDQU2LRZCliUUWYsiSwAhz6iNx-zm6GucV7UTypPohNF6CFJDXEZpHA3Q3RES1jhnqa23VvVoDzWE9ffUdVT_TT3gt0dcmW29Njurhwb_o19WYH_m</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Gowda, Sanketh R.</creator><creator>Dees, Dennis W.</creator><creator>Jansen, Andrew N.</creator><creator>Gallagher, Kevin G.</creator><general>The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes</title><author>Gowda, Sanketh R. ; Dees, Dennis W. ; Jansen, Andrew N. ; Gallagher, Kevin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ed1f1175510df65182d4eb3eb8a248cbb141650cabfa8cd99186fac641a176ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>intercalation</topic><topic>lithium ion</topic><topic>modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gowda, Sanketh R.</creatorcontrib><creatorcontrib>Dees, Dennis W.</creatorcontrib><creatorcontrib>Jansen, Andrew N.</creatorcontrib><creatorcontrib>Gallagher, Kevin G.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gowda, Sanketh R.</au><au>Dees, Dennis W.</au><au>Jansen, Andrew N.</au><au>Gallagher, Kevin G.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>162</volume><issue>7</issue><spage>A1374</spage><epage>A1381</epage><pages>A1374-A1381</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Lithium- and manganese-rich layered transition-metal oxide (LMR-NMC) intercalation electrodes are projected to enable batteries with high energy density and low costs for energy. However, implementation of LMR-NMC materials are challenged by life limiting mechanisms as well as less than desired rate performance. Here-in, we use electrochemical characterization of LMR-NMC electrodes to examine the large magnitude of impedance and the asymmetric polarization between charge and discharge at low states of charge (SOC). The area-specific impedance (ASI) of LMR-NMC displays a similar dependency as standard layered lithium metal oxides when compared as a function of voltage rather than SOC. Numerical physics-based modeling is used to analyze and simulate the potential response. The increasing and asymmetric behavior of the ASI in LMR-NMC at low SOC is suggested to be the result of the differing lithium diffusivities in the heterogeneous, nano-composite metal oxide material. Transport of lithium within LMR-NMC is governed by the relatively facile nickel- and cobalt-rich domains. Conversely, the mass transport within the lithium- and manganese-rich domains are characterized as comparatively sluggish. Lowering the stoichiometry of the lithium and manganese to achieve an optimal energy density at relevant discharge rates is suggested as a potentially viable path forward.</abstract><cop>United States</cop><pub>The Electrochemical Society</pub><doi>10.1149/2.0931507jes</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2015-01, Vol.162 (7), p.A1374-A1381
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_0931507jes
source IOP Publishing Journals
subjects intercalation
lithium ion
modeling
title Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20Electrochemical%20Impedance%20at%20Low%20States%20of%20Charge%20in%20Lithium-%20and%20Manganese-Rich%20Layered%20Transition-Metal%20Oxide%20Electrodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Gowda,%20Sanketh%20R.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-01-01&rft.volume=162&rft.issue=7&rft.spage=A1374&rft.epage=A1381&rft.pages=A1374-A1381&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0931507jes&rft_dat=%3Ciop_cross%3E0931507JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true