Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach

In this paper we present a mesoscopic model of the transport and electrochemical processes inside a Lithium-O2 battery cathode pore. The model dynamically resolves both Oxygen Reduction Reaction (ORR) thin film and solution phase mechanisms together with the transport of O2, Li+ and LiO2 in the elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2016, Vol.163 (3), p.A329-A337
Hauptverfasser: Blanquer, Guillaume, Yin, Yinghui, Quiroga, Matias A., Franco, Alejandro A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A337
container_issue 3
container_start_page A329
container_title Journal of the Electrochemical Society
container_volume 163
creator Blanquer, Guillaume
Yin, Yinghui
Quiroga, Matias A.
Franco, Alejandro A.
description In this paper we present a mesoscopic model of the transport and electrochemical processes inside a Lithium-O2 battery cathode pore. The model dynamically resolves both Oxygen Reduction Reaction (ORR) thin film and solution phase mechanisms together with the transport of O2, Li+ and LiO2 in the electrolyte. It is supported on an extension to three dimensions of our Kinetic Monte Carlo (KMC) Electrochemical Variable Step Size Method (E-VSSM) recently published by our group in [M. A. Quiroga and A. A. Franco, J. Electrochem. Soc., 162, E73 (2015)]. The model allows predicting porosity evolution as a function of multiple operational, physical and geometrical parameters including the pore size and inlet/outlet channel size, O2 and Li+ concentration, the property of the solvent as well as the applied overpotential. The investigation of the impact of these different aspects reveals that at the mesoscale level, the overall ORR kinetics and the discharge mechanism strongly depend on a balance between the geometrical features of the pore and the transport as well as the electrochemical properties of the system.
doi_str_mv 10.1149/2.0841602jes
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_0841602jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0841602JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-i103t-4abdddb9b17386be794aca02da419983665af457d377475c83ed010e422ab60e3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYQIMgOKc3f0COXjrzJWnTeptjzmHHLnouafJ1TemS0WSC_15FwdO7vQePkDtgCwBZPfAFKyUUjA8YL8gMKplnCgCuyHWMA2MApVQzMu6CxdH5A936D4zJHXRywdPQ0dQjrYPRI12PaNIUTI9HF9P0SZ2ntUu9Ox-zPadPOiWcHMZHuqSvzmNyhu6CT0hXehoDXZ5OU9CmvyGXnR4j3v5xTt6f12-rl6zeb7arZZ05YCJlUrfW2rZqQYmyaFFVUhvNuNUSqqoURZHrTubKCqWkyk0p0DJgKDnXbcFQzMn9r9eFUzOE8-S_aw2w5udMw5v_M-ILBRxZPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach</title><source>IOP Publishing Journals</source><creator>Blanquer, Guillaume ; Yin, Yinghui ; Quiroga, Matias A. ; Franco, Alejandro A.</creator><creatorcontrib>Blanquer, Guillaume ; Yin, Yinghui ; Quiroga, Matias A. ; Franco, Alejandro A.</creatorcontrib><description>In this paper we present a mesoscopic model of the transport and electrochemical processes inside a Lithium-O2 battery cathode pore. The model dynamically resolves both Oxygen Reduction Reaction (ORR) thin film and solution phase mechanisms together with the transport of O2, Li+ and LiO2 in the electrolyte. It is supported on an extension to three dimensions of our Kinetic Monte Carlo (KMC) Electrochemical Variable Step Size Method (E-VSSM) recently published by our group in [M. A. Quiroga and A. A. Franco, J. Electrochem. Soc., 162, E73 (2015)]. The model allows predicting porosity evolution as a function of multiple operational, physical and geometrical parameters including the pore size and inlet/outlet channel size, O2 and Li+ concentration, the property of the solvent as well as the applied overpotential. The investigation of the impact of these different aspects reveals that at the mesoscale level, the overall ORR kinetics and the discharge mechanism strongly depend on a balance between the geometrical features of the pore and the transport as well as the electrochemical properties of the system.</description><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0841602jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2016, Vol.163 (3), p.A329-A337</ispartof><rights>The Author(s) 2015. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0841602jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,4010,27900,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Blanquer, Guillaume</creatorcontrib><creatorcontrib>Yin, Yinghui</creatorcontrib><creatorcontrib>Quiroga, Matias A.</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><title>Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>In this paper we present a mesoscopic model of the transport and electrochemical processes inside a Lithium-O2 battery cathode pore. The model dynamically resolves both Oxygen Reduction Reaction (ORR) thin film and solution phase mechanisms together with the transport of O2, Li+ and LiO2 in the electrolyte. It is supported on an extension to three dimensions of our Kinetic Monte Carlo (KMC) Electrochemical Variable Step Size Method (E-VSSM) recently published by our group in [M. A. Quiroga and A. A. Franco, J. Electrochem. Soc., 162, E73 (2015)]. The model allows predicting porosity evolution as a function of multiple operational, physical and geometrical parameters including the pore size and inlet/outlet channel size, O2 and Li+ concentration, the property of the solvent as well as the applied overpotential. The investigation of the impact of these different aspects reveals that at the mesoscale level, the overall ORR kinetics and the discharge mechanism strongly depend on a balance between the geometrical features of the pore and the transport as well as the electrochemical properties of the system.</description><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNpFkEFLwzAYQIMgOKc3f0COXjrzJWnTeptjzmHHLnouafJ1TemS0WSC_15FwdO7vQePkDtgCwBZPfAFKyUUjA8YL8gMKplnCgCuyHWMA2MApVQzMu6CxdH5A936D4zJHXRywdPQ0dQjrYPRI12PaNIUTI9HF9P0SZ2ntUu9Ox-zPadPOiWcHMZHuqSvzmNyhu6CT0hXehoDXZ5OU9CmvyGXnR4j3v5xTt6f12-rl6zeb7arZZ05YCJlUrfW2rZqQYmyaFFVUhvNuNUSqqoURZHrTubKCqWkyk0p0DJgKDnXbcFQzMn9r9eFUzOE8-S_aw2w5udMw5v_M-ILBRxZPg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Blanquer, Guillaume</creator><creator>Yin, Yinghui</creator><creator>Quiroga, Matias A.</creator><creator>Franco, Alejandro A.</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope></search><sort><creationdate>2016</creationdate><title>Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach</title><author>Blanquer, Guillaume ; Yin, Yinghui ; Quiroga, Matias A. ; Franco, Alejandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i103t-4abdddb9b17386be794aca02da419983665af457d377475c83ed010e422ab60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanquer, Guillaume</creatorcontrib><creatorcontrib>Yin, Yinghui</creatorcontrib><creatorcontrib>Quiroga, Matias A.</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanquer, Guillaume</au><au>Yin, Yinghui</au><au>Quiroga, Matias A.</au><au>Franco, Alejandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2016</date><risdate>2016</risdate><volume>163</volume><issue>3</issue><spage>A329</spage><epage>A337</epage><pages>A329-A337</pages><eissn>1945-7111</eissn><abstract>In this paper we present a mesoscopic model of the transport and electrochemical processes inside a Lithium-O2 battery cathode pore. The model dynamically resolves both Oxygen Reduction Reaction (ORR) thin film and solution phase mechanisms together with the transport of O2, Li+ and LiO2 in the electrolyte. It is supported on an extension to three dimensions of our Kinetic Monte Carlo (KMC) Electrochemical Variable Step Size Method (E-VSSM) recently published by our group in [M. A. Quiroga and A. A. Franco, J. Electrochem. Soc., 162, E73 (2015)]. The model allows predicting porosity evolution as a function of multiple operational, physical and geometrical parameters including the pore size and inlet/outlet channel size, O2 and Li+ concentration, the property of the solvent as well as the applied overpotential. The investigation of the impact of these different aspects reveals that at the mesoscale level, the overall ORR kinetics and the discharge mechanism strongly depend on a balance between the geometrical features of the pore and the transport as well as the electrochemical properties of the system.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0841602jes</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1945-7111
ispartof Journal of the Electrochemical Society, 2016, Vol.163 (3), p.A329-A337
issn 1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_0841602jes
source IOP Publishing Journals
title Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Investigation%20of%20the%20Local%20Electrochemistry%20in%20Lithium-O2%20Batteries:%20A%20Kinetic%20Monte%20Carlo%20Approach&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Blanquer,%20Guillaume&rft.date=2016&rft.volume=163&rft.issue=3&rft.spage=A329&rft.epage=A337&rft.pages=A329-A337&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0841602jes&rft_dat=%3Ciop%3E0841602JES%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true