Scaling up "Nano" Li4Ti5O12 for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis
Herein, we present the upscaled synthesis of nanoparticulate Li4Ti5O12 (LTO) by means of flame spray pyrolysis (FSP), yielding high phase purity and appropriate morphology for application as high-power lithium-ion anode material. Electrodes based on this optimized LTO nanopowder, carboxymethyl cellu...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2015-01, Vol.162 (12), p.A2331-A2338 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, we present the upscaled synthesis of nanoparticulate Li4Ti5O12 (LTO) by means of flame spray pyrolysis (FSP), yielding high phase purity and appropriate morphology for application as high-power lithium-ion anode material. Electrodes based on this optimized LTO nanopowder, carboxymethyl cellulose (CMC) as binder, and copper as current collector revealed excellent rate performance, providing specific capacities of 133, 131, 129, 127, 124, and 115 mAh g−1 when applying C rates of 1C, 2C, 5C, 10C, 20C, and 50C, respectively. Targeting the commercial application of thus synthesized nanoparticles, we optimized also the electrode composition, comparing three different binding agents (CMC, PVdF, and poly(acrylic acid), PAA) and substituting the copper current collector by aluminum. The results of this comparative analysis show, that the combination of nanoparticulate LTO, CMC, and an aluminum current collector appears most suitable toward the realization of environmentally friendly and cost-efficient lithium-ion anodes, presenting very stable cycling performance for more than 1000 cycles at 10C without substantial capacity decay. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0711512jes |