Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode

The practically available specific energy of Li ion batteries (LIB) is highly depending on the used specific charge/discharge current, since the respective overpotentials of each electrode affect the two vital specific energy parameters, specific capacity and voltage. Focusing on the positive compos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2016-01, Vol.163 (14), p.A2943-A2950
Hauptverfasser: Kasnatscheew, Johannes, Rodehorst, Uta, Streipert, Benjamin, Wiemers-Meyer, Simon, Jakelski, Rene, Wagner, Ralf, Laskovic, Isidora Cekic, Winter, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A2950
container_issue 14
container_start_page A2943
container_title Journal of the Electrochemical Society
container_volume 163
creator Kasnatscheew, Johannes
Rodehorst, Uta
Streipert, Benjamin
Wiemers-Meyer, Simon
Jakelski, Rene
Wagner, Ralf
Laskovic, Isidora Cekic
Winter, Martin
description The practically available specific energy of Li ion batteries (LIB) is highly depending on the used specific charge/discharge current, since the respective overpotentials of each electrode affect the two vital specific energy parameters, specific capacity and voltage. Focusing on the positive composite electrode as the specific energy bottleneck, the overall nature of the overpotential is discussed for the LiNi1/3Co1/3Mn1/3O2 (NCM) active material. It is shown that the characteristic overpotentials during charge (delithiation) and discharge (lithiation) is state of charge (SOC) and depth of discharge (DOD) dependent, respectively. It was demonstrated that the discharge characteristics are intertwined with the previous charge conditions, particularly with the charging time and the specific charge capacity. Increasing both in parallel can even lead to a deterioration of the subsequent specific discharge capacity. Furthermore, Li+ transport pathways within the NCM composite electrode are discussed and their influence on the observed overpotential evaluated. Changes of the overpotential are found to be mainly associated with changes within the NCM crystal structure, which is experimentally supported by the correlation of the SOC dependent overpotential with the XRD determined c-axis lattice parameter. Consequently, the Li+ transport within the active material is mostly responsible for limiting the practically available specific energy.
doi_str_mv 10.1149/2.0461614jes
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_0461614jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0461614JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-i226t-f8805a05ef8efcdc5e0a26b3a65d6b7b4b0d15f339c958ce709180697c9bffe33</originalsourceid><addsrcrecordid>eNpFkDFPwzAUhC0kJEph4wd4LENavzh2YrYSUaiUNgMwR07yTF21dpW4SPx7jEBiuRvu0510hNwBmwNkapHOWSZBQrbH8YJMQGUiyQHgilyP454xgCLLJ-RQoR6cdR_UDP5I608cTj6gC1YfRmodrWzY2fORrr2jjzoEHCyOD3RJSz0ifQ3n_ovGKOwwolsLC176KBsXpU7pbFtu7iMbdr7HG3JpYi3e_vmUvK-e3sqXpKqf1-WySmyaypCYomBCM4GmQNP1nUCmU9lyLUUv27zNWtaDMJyrTomiw5wpKJhUeadaY5DzKZn99lp_avb-PLi41gBrfp5p0ub_Gf4NIDlW0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode</title><source>IOP Publishing Journals</source><creator>Kasnatscheew, Johannes ; Rodehorst, Uta ; Streipert, Benjamin ; Wiemers-Meyer, Simon ; Jakelski, Rene ; Wagner, Ralf ; Laskovic, Isidora Cekic ; Winter, Martin</creator><creatorcontrib>Kasnatscheew, Johannes ; Rodehorst, Uta ; Streipert, Benjamin ; Wiemers-Meyer, Simon ; Jakelski, Rene ; Wagner, Ralf ; Laskovic, Isidora Cekic ; Winter, Martin</creatorcontrib><description>The practically available specific energy of Li ion batteries (LIB) is highly depending on the used specific charge/discharge current, since the respective overpotentials of each electrode affect the two vital specific energy parameters, specific capacity and voltage. Focusing on the positive composite electrode as the specific energy bottleneck, the overall nature of the overpotential is discussed for the LiNi1/3Co1/3Mn1/3O2 (NCM) active material. It is shown that the characteristic overpotentials during charge (delithiation) and discharge (lithiation) is state of charge (SOC) and depth of discharge (DOD) dependent, respectively. It was demonstrated that the discharge characteristics are intertwined with the previous charge conditions, particularly with the charging time and the specific charge capacity. Increasing both in parallel can even lead to a deterioration of the subsequent specific discharge capacity. Furthermore, Li+ transport pathways within the NCM composite electrode are discussed and their influence on the observed overpotential evaluated. Changes of the overpotential are found to be mainly associated with changes within the NCM crystal structure, which is experimentally supported by the correlation of the SOC dependent overpotential with the XRD determined c-axis lattice parameter. Consequently, the Li+ transport within the active material is mostly responsible for limiting the practically available specific energy.</description><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0461614jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2016-01, Vol.163 (14), p.A2943-A2950</ispartof><rights>2016 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0461614jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><creatorcontrib>Rodehorst, Uta</creatorcontrib><creatorcontrib>Streipert, Benjamin</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Jakelski, Rene</creatorcontrib><creatorcontrib>Wagner, Ralf</creatorcontrib><creatorcontrib>Laskovic, Isidora Cekic</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><title>Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>The practically available specific energy of Li ion batteries (LIB) is highly depending on the used specific charge/discharge current, since the respective overpotentials of each electrode affect the two vital specific energy parameters, specific capacity and voltage. Focusing on the positive composite electrode as the specific energy bottleneck, the overall nature of the overpotential is discussed for the LiNi1/3Co1/3Mn1/3O2 (NCM) active material. It is shown that the characteristic overpotentials during charge (delithiation) and discharge (lithiation) is state of charge (SOC) and depth of discharge (DOD) dependent, respectively. It was demonstrated that the discharge characteristics are intertwined with the previous charge conditions, particularly with the charging time and the specific charge capacity. Increasing both in parallel can even lead to a deterioration of the subsequent specific discharge capacity. Furthermore, Li+ transport pathways within the NCM composite electrode are discussed and their influence on the observed overpotential evaluated. Changes of the overpotential are found to be mainly associated with changes within the NCM crystal structure, which is experimentally supported by the correlation of the SOC dependent overpotential with the XRD determined c-axis lattice parameter. Consequently, the Li+ transport within the active material is mostly responsible for limiting the practically available specific energy.</description><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkDFPwzAUhC0kJEph4wd4LENavzh2YrYSUaiUNgMwR07yTF21dpW4SPx7jEBiuRvu0510hNwBmwNkapHOWSZBQrbH8YJMQGUiyQHgilyP454xgCLLJ-RQoR6cdR_UDP5I608cTj6gC1YfRmodrWzY2fORrr2jjzoEHCyOD3RJSz0ifQ3n_ovGKOwwolsLC176KBsXpU7pbFtu7iMbdr7HG3JpYi3e_vmUvK-e3sqXpKqf1-WySmyaypCYomBCM4GmQNP1nUCmU9lyLUUv27zNWtaDMJyrTomiw5wpKJhUeadaY5DzKZn99lp_avb-PLi41gBrfp5p0ub_Gf4NIDlW0g</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Kasnatscheew, Johannes</creator><creator>Rodehorst, Uta</creator><creator>Streipert, Benjamin</creator><creator>Wiemers-Meyer, Simon</creator><creator>Jakelski, Rene</creator><creator>Wagner, Ralf</creator><creator>Laskovic, Isidora Cekic</creator><creator>Winter, Martin</creator><general>The Electrochemical Society</general><scope/></search><sort><creationdate>201601</creationdate><title>Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode</title><author>Kasnatscheew, Johannes ; Rodehorst, Uta ; Streipert, Benjamin ; Wiemers-Meyer, Simon ; Jakelski, Rene ; Wagner, Ralf ; Laskovic, Isidora Cekic ; Winter, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i226t-f8805a05ef8efcdc5e0a26b3a65d6b7b4b0d15f339c958ce709180697c9bffe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><creatorcontrib>Rodehorst, Uta</creatorcontrib><creatorcontrib>Streipert, Benjamin</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Jakelski, Rene</creatorcontrib><creatorcontrib>Wagner, Ralf</creatorcontrib><creatorcontrib>Laskovic, Isidora Cekic</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasnatscheew, Johannes</au><au>Rodehorst, Uta</au><au>Streipert, Benjamin</au><au>Wiemers-Meyer, Simon</au><au>Jakelski, Rene</au><au>Wagner, Ralf</au><au>Laskovic, Isidora Cekic</au><au>Winter, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2016-01</date><risdate>2016</risdate><volume>163</volume><issue>14</issue><spage>A2943</spage><epage>A2950</epage><pages>A2943-A2950</pages><eissn>1945-7111</eissn><abstract>The practically available specific energy of Li ion batteries (LIB) is highly depending on the used specific charge/discharge current, since the respective overpotentials of each electrode affect the two vital specific energy parameters, specific capacity and voltage. Focusing on the positive composite electrode as the specific energy bottleneck, the overall nature of the overpotential is discussed for the LiNi1/3Co1/3Mn1/3O2 (NCM) active material. It is shown that the characteristic overpotentials during charge (delithiation) and discharge (lithiation) is state of charge (SOC) and depth of discharge (DOD) dependent, respectively. It was demonstrated that the discharge characteristics are intertwined with the previous charge conditions, particularly with the charging time and the specific charge capacity. Increasing both in parallel can even lead to a deterioration of the subsequent specific discharge capacity. Furthermore, Li+ transport pathways within the NCM composite electrode are discussed and their influence on the observed overpotential evaluated. Changes of the overpotential are found to be mainly associated with changes within the NCM crystal structure, which is experimentally supported by the correlation of the SOC dependent overpotential with the XRD determined c-axis lattice parameter. Consequently, the Li+ transport within the active material is mostly responsible for limiting the practically available specific energy.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0461614jes</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1945-7111
ispartof Journal of the Electrochemical Society, 2016-01, Vol.163 (14), p.A2943-A2950
issn 1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_0461614jes
source IOP Publishing Journals
title Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20from%20Overpotentials%20in%20Lithium%20Ion%20Batteries:%20A%20Case%20Study%20on%20the%20LiNi1/3Co1/3Mn1/3O2%20(NCM)%20Cathode&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Kasnatscheew,%20Johannes&rft.date=2016-01&rft.volume=163&rft.issue=14&rft.spage=A2943&rft.epage=A2950&rft.pages=A2943-A2950&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0461614jes&rft_dat=%3Ciop%3E0461614JES%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true