Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current

Stacking of microfluidic fuel cells and redox batteries may cause internal current losses and reduced performance compared to single cells. In the present work, these internal current losses are investigated experimentally for an array of two microfluidic vanadium redox batteries based on flow-throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2015-01, Vol.162 (7), p.F639-F644
Hauptverfasser: Ibrahim, Omar A., Goulet, Marc-Antoni, Kjeang, Erik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F644
container_issue 7
container_start_page F639
container_title Journal of the Electrochemical Society
container_volume 162
creator Ibrahim, Omar A.
Goulet, Marc-Antoni
Kjeang, Erik
description Stacking of microfluidic fuel cells and redox batteries may cause internal current losses and reduced performance compared to single cells. In the present work, these internal current losses are investigated experimentally for an array of two microfluidic vanadium redox batteries based on flow-through porous electrodes. A unique cell array design is proposed, having two pairs of flow-through electrodes situated in a single co-laminar flow manifold. The two electrochemical cells are connected electrically in series and have series fluidic connection through the electrolyte in order to reuse the partially consumed reactants from the first, upstream cell in the second, downstream cell. The cell array prototype demonstrates a maximum power output of 9 mW and a maximum current of 13.5 mA. However, current losses up to 1.75 mA are observed at open circuit, which is attributed to reactant discharge through a parasitic cross-cell comprising of one electrode from each electrochemical cell in the shared manifold. This current loss, appearing in the form of a shunt current, is shown to be proportional to the cell potential. The drop in coulombic efficiency is calculated to quantify the effect of the shunt current. Recommendations for mitigation of shunt current in microfluidic cell arrays are provided.
doi_str_mv 10.1149/2.0211507jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_0211507jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0211507JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e5ea6762037b9be06e537ce2b2e46df49d5f3e228cf39cf77a473010450637003</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRsFZ3_oBZujD13nk27kqoLyouquuQTO_QKWlSZpJF_72RCm5cHQ58HD4OY7cIM0SVP4gZCEQNdkfpjE0wVzqziHjOJgAoM2U0XrKrlHZjxbmyE_b2HlzsfDOETXB82ZDrY-e2tA-uanhBTcMXMVZHHlq-phgoPfKl9yPGO8_X26HteTHESG1_zS581SS6-c0p-3pafhYv2erj-bVYrDInwfQZaaqMNQKkrfOawJCW1pGoBSmz8SrfaC9JiLnzMnfe2kpZCQhKg5EWQE7Z_Wl3FE8pki8PMeyreCwRyp8fSlH-_TDidyc8dIdy1w2xHeX-R78ByvdcbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current</title><source>IOP Publishing Journals</source><creator>Ibrahim, Omar A. ; Goulet, Marc-Antoni ; Kjeang, Erik</creator><creatorcontrib>Ibrahim, Omar A. ; Goulet, Marc-Antoni ; Kjeang, Erik</creatorcontrib><description>Stacking of microfluidic fuel cells and redox batteries may cause internal current losses and reduced performance compared to single cells. In the present work, these internal current losses are investigated experimentally for an array of two microfluidic vanadium redox batteries based on flow-through porous electrodes. A unique cell array design is proposed, having two pairs of flow-through electrodes situated in a single co-laminar flow manifold. The two electrochemical cells are connected electrically in series and have series fluidic connection through the electrolyte in order to reuse the partially consumed reactants from the first, upstream cell in the second, downstream cell. The cell array prototype demonstrates a maximum power output of 9 mW and a maximum current of 13.5 mA. However, current losses up to 1.75 mA are observed at open circuit, which is attributed to reactant discharge through a parasitic cross-cell comprising of one electrode from each electrochemical cell in the shared manifold. This current loss, appearing in the form of a shunt current, is shown to be proportional to the cell potential. The drop in coulombic efficiency is calculated to quantify the effect of the shunt current. Recommendations for mitigation of shunt current in microfluidic cell arrays are provided.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0211507jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2015-01, Vol.162 (7), p.F639-F644</ispartof><rights>The Author(s) 2015. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-e5ea6762037b9be06e537ce2b2e46df49d5f3e228cf39cf77a473010450637003</citedby><cites>FETCH-LOGICAL-c306t-e5ea6762037b9be06e537ce2b2e46df49d5f3e228cf39cf77a473010450637003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0211507jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Ibrahim, Omar A.</creatorcontrib><creatorcontrib>Goulet, Marc-Antoni</creatorcontrib><creatorcontrib>Kjeang, Erik</creatorcontrib><title>Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Stacking of microfluidic fuel cells and redox batteries may cause internal current losses and reduced performance compared to single cells. In the present work, these internal current losses are investigated experimentally for an array of two microfluidic vanadium redox batteries based on flow-through porous electrodes. A unique cell array design is proposed, having two pairs of flow-through electrodes situated in a single co-laminar flow manifold. The two electrochemical cells are connected electrically in series and have series fluidic connection through the electrolyte in order to reuse the partially consumed reactants from the first, upstream cell in the second, downstream cell. The cell array prototype demonstrates a maximum power output of 9 mW and a maximum current of 13.5 mA. However, current losses up to 1.75 mA are observed at open circuit, which is attributed to reactant discharge through a parasitic cross-cell comprising of one electrode from each electrochemical cell in the shared manifold. This current loss, appearing in the form of a shunt current, is shown to be proportional to the cell potential. The drop in coulombic efficiency is calculated to quantify the effect of the shunt current. Recommendations for mitigation of shunt current in microfluidic cell arrays are provided.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkEtLw0AUhQdRsFZ3_oBZujD13nk27kqoLyouquuQTO_QKWlSZpJF_72RCm5cHQ58HD4OY7cIM0SVP4gZCEQNdkfpjE0wVzqziHjOJgAoM2U0XrKrlHZjxbmyE_b2HlzsfDOETXB82ZDrY-e2tA-uanhBTcMXMVZHHlq-phgoPfKl9yPGO8_X26HteTHESG1_zS581SS6-c0p-3pafhYv2erj-bVYrDInwfQZaaqMNQKkrfOawJCW1pGoBSmz8SrfaC9JiLnzMnfe2kpZCQhKg5EWQE7Z_Wl3FE8pki8PMeyreCwRyp8fSlH-_TDidyc8dIdy1w2xHeX-R78ByvdcbQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Ibrahim, Omar A.</creator><creator>Goulet, Marc-Antoni</creator><creator>Kjeang, Erik</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current</title><author>Ibrahim, Omar A. ; Goulet, Marc-Antoni ; Kjeang, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e5ea6762037b9be06e537ce2b2e46df49d5f3e228cf39cf77a473010450637003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Omar A.</creatorcontrib><creatorcontrib>Goulet, Marc-Antoni</creatorcontrib><creatorcontrib>Kjeang, Erik</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim, Omar A.</au><au>Goulet, Marc-Antoni</au><au>Kjeang, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>162</volume><issue>7</issue><spage>F639</spage><epage>F644</epage><pages>F639-F644</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Stacking of microfluidic fuel cells and redox batteries may cause internal current losses and reduced performance compared to single cells. In the present work, these internal current losses are investigated experimentally for an array of two microfluidic vanadium redox batteries based on flow-through porous electrodes. A unique cell array design is proposed, having two pairs of flow-through electrodes situated in a single co-laminar flow manifold. The two electrochemical cells are connected electrically in series and have series fluidic connection through the electrolyte in order to reuse the partially consumed reactants from the first, upstream cell in the second, downstream cell. The cell array prototype demonstrates a maximum power output of 9 mW and a maximum current of 13.5 mA. However, current losses up to 1.75 mA are observed at open circuit, which is attributed to reactant discharge through a parasitic cross-cell comprising of one electrode from each electrochemical cell in the shared manifold. This current loss, appearing in the form of a shunt current, is shown to be proportional to the cell potential. The drop in coulombic efficiency is calculated to quantify the effect of the shunt current. Recommendations for mitigation of shunt current in microfluidic cell arrays are provided.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0211507jes</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2015-01, Vol.162 (7), p.F639-F644
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_0211507jes
source IOP Publishing Journals
title Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Electrochemical%20Cell%20Array%20in%20Series:%20Effect%20of%20Shunt%20Current&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Ibrahim,%20Omar%20A.&rft.date=2015-01-01&rft.volume=162&rft.issue=7&rft.spage=F639&rft.epage=F644&rft.pages=F639-F644&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0211507jes&rft_dat=%3Ciop_cross%3E0211507JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true