Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries

In an electrochemical cell, crystalline silicon and lithium react at room temperature, forming an amorphous phase of lithiated silicon. The reaction front-the phase boundary between the crystalline silicon and the lithiated silicon-is atomically sharp. Evidence has accumulated recently that the velo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2012-01, Vol.159 (3), p.A238-A243
Hauptverfasser: Zhao, Kejie, Pharr, Matt, Wan, Qiang, Wang, Wei L., Kaxiras, Efthimios, Vlassak, Joost J., Suo, Zhigang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A243
container_issue 3
container_start_page A238
container_title Journal of the Electrochemical Society
container_volume 159
creator Zhao, Kejie
Pharr, Matt
Wan, Qiang
Wang, Wei L.
Kaxiras, Efthimios
Vlassak, Joost J.
Suo, Zhigang
description In an electrochemical cell, crystalline silicon and lithium react at room temperature, forming an amorphous phase of lithiated silicon. The reaction front-the phase boundary between the crystalline silicon and the lithiated silicon-is atomically sharp. Evidence has accumulated recently that the velocity of the reaction front is limited by the rate of the reaction at the front, rather than by the diffusion of lithium through the amorphous phase. This paper presents a model of concurrent reaction and plasticity. We identify the driving force for the movement of the reaction front, and accommodate the reaction-induced volumetric expansion by plastic deformation of the lithiated silicon. The model is illustrated by an analytical solution of the co-evolving reaction and plasticity in a spherical particle. We derive the conditions under which the lithiation-induced stress stalls the reaction. We show that fracture is averted if the particle is small and the yield strength of lithiated silicon is low. Furthermore, we show that the model accounts for recently observed lithiated silicon of anisotropic morphologies.
doi_str_mv 10.1149/2.020203jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_020203jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>020203JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e33bfd14c4e016c08150ada3b916313d668f91f7d5896d50cb446afc8ff64b473</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoOI6u_APZuZBq7iRN26UWHwMDio91SfPQO2TSIUkX8--tjriSs7icw8flcAg5B3YFIJrrxRVbTOJrmw7IDBpRFhUAHJIZY8ALIUs4JicprScLtahmxLdD0GOMNmT6YpXOOASqgqHPXqWMGvOOmjFi-KDLgBmVpyvMn6h-wMHRNu5SVt5jsPQVPeopxrCHxk2xnOytytlGtOmUHDnlkz37vXPyfn_31j4Wq6eHZXuzKjTnkAvLee8MCC0sA6lZDSVTRvG-AcmBGylr14CrTFk30pRM90JI5XTtnBS9qPicXO7_6jikFK3rthE3Ku46YN33UN2i-xtqoi_2NA7bbj2MMUzd_iW_AEY3adI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries</title><source>Institute of Physics Journals</source><creator>Zhao, Kejie ; Pharr, Matt ; Wan, Qiang ; Wang, Wei L. ; Kaxiras, Efthimios ; Vlassak, Joost J. ; Suo, Zhigang</creator><creatorcontrib>Zhao, Kejie ; Pharr, Matt ; Wan, Qiang ; Wang, Wei L. ; Kaxiras, Efthimios ; Vlassak, Joost J. ; Suo, Zhigang</creatorcontrib><description>In an electrochemical cell, crystalline silicon and lithium react at room temperature, forming an amorphous phase of lithiated silicon. The reaction front-the phase boundary between the crystalline silicon and the lithiated silicon-is atomically sharp. Evidence has accumulated recently that the velocity of the reaction front is limited by the rate of the reaction at the front, rather than by the diffusion of lithium through the amorphous phase. This paper presents a model of concurrent reaction and plasticity. We identify the driving force for the movement of the reaction front, and accommodate the reaction-induced volumetric expansion by plastic deformation of the lithiated silicon. The model is illustrated by an analytical solution of the co-evolving reaction and plasticity in a spherical particle. We derive the conditions under which the lithiation-induced stress stalls the reaction. We show that fracture is averted if the particle is small and the yield strength of lithiated silicon is low. Furthermore, we show that the model accounts for recently observed lithiated silicon of anisotropic morphologies.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.020203jes</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>Journal of the Electrochemical Society, 2012-01, Vol.159 (3), p.A238-A243</ispartof><rights>2011 ECS - The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e33bfd14c4e016c08150ada3b916313d668f91f7d5896d50cb446afc8ff64b473</citedby><cites>FETCH-LOGICAL-c331t-e33bfd14c4e016c08150ada3b916313d668f91f7d5896d50cb446afc8ff64b473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.020203jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845</link.rule.ids></links><search><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Pharr, Matt</creatorcontrib><creatorcontrib>Wan, Qiang</creatorcontrib><creatorcontrib>Wang, Wei L.</creatorcontrib><creatorcontrib>Kaxiras, Efthimios</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><creatorcontrib>Suo, Zhigang</creatorcontrib><title>Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>In an electrochemical cell, crystalline silicon and lithium react at room temperature, forming an amorphous phase of lithiated silicon. The reaction front-the phase boundary between the crystalline silicon and the lithiated silicon-is atomically sharp. Evidence has accumulated recently that the velocity of the reaction front is limited by the rate of the reaction at the front, rather than by the diffusion of lithium through the amorphous phase. This paper presents a model of concurrent reaction and plasticity. We identify the driving force for the movement of the reaction front, and accommodate the reaction-induced volumetric expansion by plastic deformation of the lithiated silicon. The model is illustrated by an analytical solution of the co-evolving reaction and plasticity in a spherical particle. We derive the conditions under which the lithiation-induced stress stalls the reaction. We show that fracture is averted if the particle is small and the yield strength of lithiated silicon is low. Furthermore, we show that the model accounts for recently observed lithiated silicon of anisotropic morphologies.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEtLxDAUhYMoOI6u_APZuZBq7iRN26UWHwMDio91SfPQO2TSIUkX8--tjriSs7icw8flcAg5B3YFIJrrxRVbTOJrmw7IDBpRFhUAHJIZY8ALIUs4JicprScLtahmxLdD0GOMNmT6YpXOOASqgqHPXqWMGvOOmjFi-KDLgBmVpyvMn6h-wMHRNu5SVt5jsPQVPeopxrCHxk2xnOytytlGtOmUHDnlkz37vXPyfn_31j4Wq6eHZXuzKjTnkAvLee8MCC0sA6lZDSVTRvG-AcmBGylr14CrTFk30pRM90JI5XTtnBS9qPicXO7_6jikFK3rthE3Ku46YN33UN2i-xtqoi_2NA7bbj2MMUzd_iW_AEY3adI</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Zhao, Kejie</creator><creator>Pharr, Matt</creator><creator>Wan, Qiang</creator><creator>Wang, Wei L.</creator><creator>Kaxiras, Efthimios</creator><creator>Vlassak, Joost J.</creator><creator>Suo, Zhigang</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120101</creationdate><title>Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries</title><author>Zhao, Kejie ; Pharr, Matt ; Wan, Qiang ; Wang, Wei L. ; Kaxiras, Efthimios ; Vlassak, Joost J. ; Suo, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e33bfd14c4e016c08150ada3b916313d668f91f7d5896d50cb446afc8ff64b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Pharr, Matt</creatorcontrib><creatorcontrib>Wan, Qiang</creatorcontrib><creatorcontrib>Wang, Wei L.</creatorcontrib><creatorcontrib>Kaxiras, Efthimios</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><creatorcontrib>Suo, Zhigang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Kejie</au><au>Pharr, Matt</au><au>Wan, Qiang</au><au>Wang, Wei L.</au><au>Kaxiras, Efthimios</au><au>Vlassak, Joost J.</au><au>Suo, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>159</volume><issue>3</issue><spage>A238</spage><epage>A243</epage><pages>A238-A243</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>In an electrochemical cell, crystalline silicon and lithium react at room temperature, forming an amorphous phase of lithiated silicon. The reaction front-the phase boundary between the crystalline silicon and the lithiated silicon-is atomically sharp. Evidence has accumulated recently that the velocity of the reaction front is limited by the rate of the reaction at the front, rather than by the diffusion of lithium through the amorphous phase. This paper presents a model of concurrent reaction and plasticity. We identify the driving force for the movement of the reaction front, and accommodate the reaction-induced volumetric expansion by plastic deformation of the lithiated silicon. The model is illustrated by an analytical solution of the co-evolving reaction and plasticity in a spherical particle. We derive the conditions under which the lithiation-induced stress stalls the reaction. We show that fracture is averted if the particle is small and the yield strength of lithiated silicon is low. Furthermore, we show that the model accounts for recently observed lithiated silicon of anisotropic morphologies.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/2.020203jes</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2012-01, Vol.159 (3), p.A238-A243
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_020203jes
source Institute of Physics Journals
title Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20Reaction%20and%20Plasticity%20during%20Initial%20Lithiation%20of%20Crystalline%20Silicon%20in%20Lithium-Ion%20Batteries&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Zhao,%20Kejie&rft.date=2012-01-01&rft.volume=159&rft.issue=3&rft.spage=A238&rft.epage=A243&rft.pages=A238-A243&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.020203jes&rft_dat=%3Ciop_cross%3E020203JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true