Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4 Electrodes

Spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive next-generation cathode material for Li-ion batteries because of its reversible specific charge at high operating potentials. However, the cycling efficiency of Li-ion cells with LNMO-based cathodes is limited by the poor anodic stability of the most com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2016-01, Vol.163 (2), p.A83-A89
Hauptverfasser: He, Minglong, Boulet-Roblin, Lucien, Borel, Philippe, Tessier, Cécile, Novák, Petr, Villevieille, Claire, Berg, Erik J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A89
container_issue 2
container_start_page A83
container_title Journal of the Electrochemical Society
container_volume 163
creator He, Minglong
Boulet-Roblin, Lucien
Borel, Philippe
Tessier, Cécile
Novák, Petr
Villevieille, Claire
Berg, Erik J.
description Spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive next-generation cathode material for Li-ion batteries because of its reversible specific charge at high operating potentials. However, the cycling efficiency of Li-ion cells with LNMO-based cathodes is limited by the poor anodic stability of the most commonly employed alkyl carbonate electrolytes. The electrolyte/electrode stability is investigated by in situ gas analysis techniques, including cell pressure measurements and online electrochemical mass spectrometry (OEMS), to monitor the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) electrolytes on LNMO electrodes. Increasing the DMC content, exchanging the LiPF6 salt for LiClO4, and elevating the cell temperature, all result in higher gas evolution rates. The major volatile side reaction products are H2, CO, CO2, and POF3 (only with LiPF6 salt), which display unique gas evolution profiles depending on electrode potential and electrolyte composition. The significantly higher gas evolution rates for the DMC-rich electrolyte are attributed to an electrolyte solution-mediated decomposition cycle, which is facilitated by the enhanced mass transport induced by the lower viscosity of DMC. Differences in reactivity of the Ni cationic redox state on the LNMO surface toward electrolyte decomposition are indicated.
doi_str_mv 10.1149/2.0201602jes
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_0201602jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0201602JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-i188t-c8de2029681ecf677c768500ebf48ff22c3c5007076cec7bc6b1e5249ca7d3903</originalsourceid><addsrcrecordid>eNpFkE1OwzAUhC0kJEphxwG8ZEHCe86PnSVU5UcqdNHCNnKcZ5EqjavYQeqai3AWTkYqQKxGI818Iw1jFwgxYlpcixgEYA5iQ_6ITbBIs0gi4gk79X4DgKhSOWEfc2vJBM-d5SvXvlMXrviiCW_NsOUr3Y5OdzVf03ZHvQ5DT9x1fBV01bRN2B9qM91XrtOBolvtqebzdgT2rt0H8ty6nmcxfH2-jtTnBuLsqcM4W6Z_sZr8GTu2uvV0_qtT9nI3X88eosXy_nF2s4gaVCpERtUkQBS5QjI2l9LIXGUAVNlUWSuEScxoJcjckJGVySukTKSF0bJOCkim7PKH27hduXFD341rJUJ5OKwU5f9hyTebx2Bv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4 Electrodes</title><source>IOP Publishing Journals</source><creator>He, Minglong ; Boulet-Roblin, Lucien ; Borel, Philippe ; Tessier, Cécile ; Novák, Petr ; Villevieille, Claire ; Berg, Erik J.</creator><creatorcontrib>He, Minglong ; Boulet-Roblin, Lucien ; Borel, Philippe ; Tessier, Cécile ; Novák, Petr ; Villevieille, Claire ; Berg, Erik J.</creatorcontrib><description>Spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive next-generation cathode material for Li-ion batteries because of its reversible specific charge at high operating potentials. However, the cycling efficiency of Li-ion cells with LNMO-based cathodes is limited by the poor anodic stability of the most commonly employed alkyl carbonate electrolytes. The electrolyte/electrode stability is investigated by in situ gas analysis techniques, including cell pressure measurements and online electrochemical mass spectrometry (OEMS), to monitor the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) electrolytes on LNMO electrodes. Increasing the DMC content, exchanging the LiPF6 salt for LiClO4, and elevating the cell temperature, all result in higher gas evolution rates. The major volatile side reaction products are H2, CO, CO2, and POF3 (only with LiPF6 salt), which display unique gas evolution profiles depending on electrode potential and electrolyte composition. The significantly higher gas evolution rates for the DMC-rich electrolyte are attributed to an electrolyte solution-mediated decomposition cycle, which is facilitated by the enhanced mass transport induced by the lower viscosity of DMC. Differences in reactivity of the Ni cationic redox state on the LNMO surface toward electrolyte decomposition are indicated.</description><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0201602jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2016-01, Vol.163 (2), p.A83-A89</ispartof><rights>2015 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0201602jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>He, Minglong</creatorcontrib><creatorcontrib>Boulet-Roblin, Lucien</creatorcontrib><creatorcontrib>Borel, Philippe</creatorcontrib><creatorcontrib>Tessier, Cécile</creatorcontrib><creatorcontrib>Novák, Petr</creatorcontrib><creatorcontrib>Villevieille, Claire</creatorcontrib><creatorcontrib>Berg, Erik J.</creatorcontrib><title>Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4 Electrodes</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive next-generation cathode material for Li-ion batteries because of its reversible specific charge at high operating potentials. However, the cycling efficiency of Li-ion cells with LNMO-based cathodes is limited by the poor anodic stability of the most commonly employed alkyl carbonate electrolytes. The electrolyte/electrode stability is investigated by in situ gas analysis techniques, including cell pressure measurements and online electrochemical mass spectrometry (OEMS), to monitor the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) electrolytes on LNMO electrodes. Increasing the DMC content, exchanging the LiPF6 salt for LiClO4, and elevating the cell temperature, all result in higher gas evolution rates. The major volatile side reaction products are H2, CO, CO2, and POF3 (only with LiPF6 salt), which display unique gas evolution profiles depending on electrode potential and electrolyte composition. The significantly higher gas evolution rates for the DMC-rich electrolyte are attributed to an electrolyte solution-mediated decomposition cycle, which is facilitated by the enhanced mass transport induced by the lower viscosity of DMC. Differences in reactivity of the Ni cationic redox state on the LNMO surface toward electrolyte decomposition are indicated.</description><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1OwzAUhC0kJEphxwG8ZEHCe86PnSVU5UcqdNHCNnKcZ5EqjavYQeqai3AWTkYqQKxGI818Iw1jFwgxYlpcixgEYA5iQ_6ITbBIs0gi4gk79X4DgKhSOWEfc2vJBM-d5SvXvlMXrviiCW_NsOUr3Y5OdzVf03ZHvQ5DT9x1fBV01bRN2B9qM91XrtOBolvtqebzdgT2rt0H8ty6nmcxfH2-jtTnBuLsqcM4W6Z_sZr8GTu2uvV0_qtT9nI3X88eosXy_nF2s4gaVCpERtUkQBS5QjI2l9LIXGUAVNlUWSuEScxoJcjckJGVySukTKSF0bJOCkim7PKH27hduXFD341rJUJ5OKwU5f9hyTebx2Bv</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>He, Minglong</creator><creator>Boulet-Roblin, Lucien</creator><creator>Borel, Philippe</creator><creator>Tessier, Cécile</creator><creator>Novák, Petr</creator><creator>Villevieille, Claire</creator><creator>Berg, Erik J.</creator><general>The Electrochemical Society</general><scope/></search><sort><creationdate>20160101</creationdate><title>Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4 Electrodes</title><author>He, Minglong ; Boulet-Roblin, Lucien ; Borel, Philippe ; Tessier, Cécile ; Novák, Petr ; Villevieille, Claire ; Berg, Erik J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i188t-c8de2029681ecf677c768500ebf48ff22c3c5007076cec7bc6b1e5249ca7d3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Minglong</creatorcontrib><creatorcontrib>Boulet-Roblin, Lucien</creatorcontrib><creatorcontrib>Borel, Philippe</creatorcontrib><creatorcontrib>Tessier, Cécile</creatorcontrib><creatorcontrib>Novák, Petr</creatorcontrib><creatorcontrib>Villevieille, Claire</creatorcontrib><creatorcontrib>Berg, Erik J.</creatorcontrib><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Minglong</au><au>Boulet-Roblin, Lucien</au><au>Borel, Philippe</au><au>Tessier, Cécile</au><au>Novák, Petr</au><au>Villevieille, Claire</au><au>Berg, Erik J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4 Electrodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>163</volume><issue>2</issue><spage>A83</spage><epage>A89</epage><pages>A83-A89</pages><eissn>1945-7111</eissn><abstract>Spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive next-generation cathode material for Li-ion batteries because of its reversible specific charge at high operating potentials. However, the cycling efficiency of Li-ion cells with LNMO-based cathodes is limited by the poor anodic stability of the most commonly employed alkyl carbonate electrolytes. The electrolyte/electrode stability is investigated by in situ gas analysis techniques, including cell pressure measurements and online electrochemical mass spectrometry (OEMS), to monitor the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) electrolytes on LNMO electrodes. Increasing the DMC content, exchanging the LiPF6 salt for LiClO4, and elevating the cell temperature, all result in higher gas evolution rates. The major volatile side reaction products are H2, CO, CO2, and POF3 (only with LiPF6 salt), which display unique gas evolution profiles depending on electrode potential and electrolyte composition. The significantly higher gas evolution rates for the DMC-rich electrolyte are attributed to an electrolyte solution-mediated decomposition cycle, which is facilitated by the enhanced mass transport induced by the lower viscosity of DMC. Differences in reactivity of the Ni cationic redox state on the LNMO surface toward electrolyte decomposition are indicated.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0201602jes</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1945-7111
ispartof Journal of the Electrochemical Society, 2016-01, Vol.163 (2), p.A83-A89
issn 1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_0201602jes
source IOP Publishing Journals
title Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4 Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Solvent,%20Lithium%20Salt,%20and%20Temperature%20on%20Stability%20of%20Carbonate-Based%20Electrolytes%20for%205.0%C2%A0V%20LiNi0.5Mn1.5O4%20Electrodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=He,%20Minglong&rft.date=2016-01-01&rft.volume=163&rft.issue=2&rft.spage=A83&rft.epage=A89&rft.pages=A83-A89&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0201602jes&rft_dat=%3Ciop%3E0201602JES%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true