Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study
A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potent...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2014-01, Vol.161 (13), p.H3100-H3105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | H3105 |
---|---|
container_issue | 13 |
container_start_page | H3100 |
container_title | Journal of the Electrochemical Society |
container_volume | 161 |
creator | Leonard, Nathaniel D. Barton, Scott Calabrese |
description | A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water. |
doi_str_mv | 10.1149/2.0161413jes |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_0161413jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0161413JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</originalsourceid><addsrcrecordid>eNptkLtOwzAUhi0EEqWw8QAeGXDxiS9JxipcpQJSoXPkJseVS4kr2x369rgqEgvLufz6zhk-Qq6BTwBkfVdMOGiQINYYT8gIaqlYCQCnZMQ5CCa1gnNyEeM6r1DJckS66WA2--gi9ZZO--jDNjk_0AdrsUs5Haihr5jMhr25FPwKB9aYsMx5Y9LhNNFFdMMqY3OfTDqM81zYvYtf9CPt-v0lObNmE_Hqt4_J4vHhs3lms_enl2Y6Y53gOjEEobmoOi77ToHSVQ-mwkqbcom8LPq61qrQArmwQmItBRqh1RILq3pdWCvG5Pb4tws-xoC23Qb3bcK-Bd4eBLVF-yco4zdH3Pltu_a7kE3E_9EfwE9lpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</title><source>IOP Publishing Journals</source><creator>Leonard, Nathaniel D. ; Barton, Scott Calabrese</creator><creatorcontrib>Leonard, Nathaniel D. ; Barton, Scott Calabrese</creatorcontrib><description>A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0161413jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2014-01, Vol.161 (13), p.H3100-H3105</ispartof><rights>The Author(s) 2014. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</citedby><cites>FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0161413jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Leonard, Nathaniel D.</creatorcontrib><creatorcontrib>Barton, Scott Calabrese</creatorcontrib><title>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkLtOwzAUhi0EEqWw8QAeGXDxiS9JxipcpQJSoXPkJseVS4kr2x369rgqEgvLufz6zhk-Qq6BTwBkfVdMOGiQINYYT8gIaqlYCQCnZMQ5CCa1gnNyEeM6r1DJckS66WA2--gi9ZZO--jDNjk_0AdrsUs5Haihr5jMhr25FPwKB9aYsMx5Y9LhNNFFdMMqY3OfTDqM81zYvYtf9CPt-v0lObNmE_Hqt4_J4vHhs3lms_enl2Y6Y53gOjEEobmoOi77ToHSVQ-mwkqbcom8LPq61qrQArmwQmItBRqh1RILq3pdWCvG5Pb4tws-xoC23Qb3bcK-Bd4eBLVF-yco4zdH3Pltu_a7kE3E_9EfwE9lpg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Leonard, Nathaniel D.</creator><creator>Barton, Scott Calabrese</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</title><author>Leonard, Nathaniel D. ; Barton, Scott Calabrese</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonard, Nathaniel D.</creatorcontrib><creatorcontrib>Barton, Scott Calabrese</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonard, Nathaniel D.</au><au>Barton, Scott Calabrese</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>161</volume><issue>13</issue><spage>H3100</spage><epage>H3105</epage><pages>H3100-H3105</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0161413jes</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2014-01, Vol.161 (13), p.H3100-H3105 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_iop_journals_10_1149_2_0161413jes |
source | IOP Publishing Journals |
title | Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Adsorption%20Effects%20on%20a%20Metal-Nitrogen-Carbon%20Catalyst%20Using%20a%20Rotating%20Ring-Disk%20Study&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Leonard,%20Nathaniel%20D.&rft.date=2014-01-01&rft.volume=161&rft.issue=13&rft.spage=H3100&rft.epage=H3105&rft.pages=H3100-H3105&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0161413jes&rft_dat=%3Ciop_cross%3E0161413JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |