Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study

A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2014-01, Vol.161 (13), p.H3100-H3105
Hauptverfasser: Leonard, Nathaniel D., Barton, Scott Calabrese
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H3105
container_issue 13
container_start_page H3100
container_title Journal of the Electrochemical Society
container_volume 161
creator Leonard, Nathaniel D.
Barton, Scott Calabrese
description A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water.
doi_str_mv 10.1149/2.0161413jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_2_0161413jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0161413JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</originalsourceid><addsrcrecordid>eNptkLtOwzAUhi0EEqWw8QAeGXDxiS9JxipcpQJSoXPkJseVS4kr2x369rgqEgvLufz6zhk-Qq6BTwBkfVdMOGiQINYYT8gIaqlYCQCnZMQ5CCa1gnNyEeM6r1DJckS66WA2--gi9ZZO--jDNjk_0AdrsUs5Haihr5jMhr25FPwKB9aYsMx5Y9LhNNFFdMMqY3OfTDqM81zYvYtf9CPt-v0lObNmE_Hqt4_J4vHhs3lms_enl2Y6Y53gOjEEobmoOi77ToHSVQ-mwkqbcom8LPq61qrQArmwQmItBRqh1RILq3pdWCvG5Pb4tws-xoC23Qb3bcK-Bd4eBLVF-yco4zdH3Pltu_a7kE3E_9EfwE9lpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</title><source>IOP Publishing Journals</source><creator>Leonard, Nathaniel D. ; Barton, Scott Calabrese</creator><creatorcontrib>Leonard, Nathaniel D. ; Barton, Scott Calabrese</creatorcontrib><description>A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0161413jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2014-01, Vol.161 (13), p.H3100-H3105</ispartof><rights>The Author(s) 2014. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</citedby><cites>FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0161413jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Leonard, Nathaniel D.</creatorcontrib><creatorcontrib>Barton, Scott Calabrese</creatorcontrib><title>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkLtOwzAUhi0EEqWw8QAeGXDxiS9JxipcpQJSoXPkJseVS4kr2x369rgqEgvLufz6zhk-Qq6BTwBkfVdMOGiQINYYT8gIaqlYCQCnZMQ5CCa1gnNyEeM6r1DJckS66WA2--gi9ZZO--jDNjk_0AdrsUs5Haihr5jMhr25FPwKB9aYsMx5Y9LhNNFFdMMqY3OfTDqM81zYvYtf9CPt-v0lObNmE_Hqt4_J4vHhs3lms_enl2Y6Y53gOjEEobmoOi77ToHSVQ-mwkqbcom8LPq61qrQArmwQmItBRqh1RILq3pdWCvG5Pb4tws-xoC23Qb3bcK-Bd4eBLVF-yco4zdH3Pltu_a7kE3E_9EfwE9lpg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Leonard, Nathaniel D.</creator><creator>Barton, Scott Calabrese</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</title><author>Leonard, Nathaniel D. ; Barton, Scott Calabrese</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e136038c04dc51568d1a8e86a7be072d9965263e03f34e943ea365be2f5d62ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonard, Nathaniel D.</creatorcontrib><creatorcontrib>Barton, Scott Calabrese</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonard, Nathaniel D.</au><au>Barton, Scott Calabrese</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>161</volume><issue>13</issue><spage>H3100</spage><epage>H3105</epage><pages>H3100-H3105</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>A steady-state, rotating ring disk study of the oxygen reduction reaction (ORR) was conducted in acid environment using a pyrolyzed metal/nitrogen/carbon (MNC) electrocatalyst. Analysis of peroxide generation indicates that ORR proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials. Above 0.6 V vs RHE, the direct four-electron pathway to water without a desorbing intermediate dominates oxygen reduction because peroxide generation is inhibited due to site availability. In contrast, at potentials below 0.6 V, oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability. The net peroxide generation remains relatively low over the entire range due to reduction of peroxide to water.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0161413jes</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2014-01, Vol.161 (13), p.H3100-H3105
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_2_0161413jes
source IOP Publishing Journals
title Analysis of Adsorption Effects on a Metal-Nitrogen-Carbon Catalyst Using a Rotating Ring-Disk Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Adsorption%20Effects%20on%20a%20Metal-Nitrogen-Carbon%20Catalyst%20Using%20a%20Rotating%20Ring-Disk%20Study&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Leonard,%20Nathaniel%20D.&rft.date=2014-01-01&rft.volume=161&rft.issue=13&rft.spage=H3100&rft.epage=H3105&rft.pages=H3100-H3105&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0161413jes&rft_dat=%3Ciop_cross%3E0161413JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true