Positive Tone, Polynorbornene Dielectric Crosslinking

The processing and properties of a positive-tone, aqueous develop, epoxy crosslinked permanent dielectric based on a polynorbornene (PNB) backbone and bis(diazonaphthoquinone) (DNQ) photosensitive compound were investigated. The developing and cure properties of the films were studied as a function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS journal of solid state science and technology 2015-01, Vol.4 (1), p.N3008-N3014
Hauptverfasser: Schwartz, Jared M., Mueller, Brennen K., Elce, Edmund, Pritchard, Zachary D., Li, Helen W., Grillo, Angelica M., Lee, Sang Y., Kohl, Paul A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The processing and properties of a positive-tone, aqueous develop, epoxy crosslinked permanent dielectric based on a polynorbornene (PNB) backbone and bis(diazonaphthoquinone) (DNQ) photosensitive compound were investigated. The developing and cure properties of the films were studied as a function of cure temperature, epoxy crosslinker loading and DNQ loading. Reduced modulus measurements showed that crosslinking of the polymer film occurred via reaction of the polymer with DNQ. The final modulus of the DNQ-crosslinked film was 4.0 GPa. Swelling measurements for a UV exposed film showed material leaching from the film. Residual solvent from swelling measurements was analysed by gel permeation chromatography which showed the indene carboxylic acid form of DNQ leached out of the polymer film. The unexposed film did not exhibit material loss through leaching. When developed, films showed a decline in modulus to 2.6 GPa, likely due to the reaction of DNQ with the aqueous base developer forming nonreactive byproducts that did not contribute to crosslinking. An epoxy crosslinker was added to the formulation which helped crosslink the polymer film by inhibiting uptake of the aqueous base during developing. The epoxy inhibition of the base uptake was confirmed by quartz crystal microbalance, where an increase in epoxy loading led to a decrease in base uptake of the film during developing. 19F-NMR results support the DNQ-PNB crosslinking through esterification. Electrical characterization of the cured PNB films showed a relative dielectric constant of 3.65 for a DNQ and epoxy containing film after curing at 220°C.
ISSN:2162-8769
2162-8777
DOI:10.1149/2.0021501jss