A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries
Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2024-06, Vol.171 (6), p.60531 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 60531 |
container_title | Journal of the Electrochemical Society |
container_volume | 171 |
creator | Tredenick, E. C. Wheeler, S. Drummond, R. Sun, Y. Duncan, S. R. Grant, P. S. |
description | Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness. |
doi_str_mv | 10.1149/1945-7111/ad5767 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_1945_7111_ad5767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesad5767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-a08904ff09d84442ed6367fda2fcf23e3253cbc88a981615428fe97b6e9ca3103</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j3kAY5NNdjc5ttWq0FoRPS9pdkJT0k1JUqRv75YWb56GGf7vZ_gQumf0kTGhRkyJktSMsZFuy7qqL9Dg73SJBpQyTkRVsmt0k9KmX5kU9QCFMV7sfXZeHyDip3DwQGZ77yGSd_jZ6g4vQgse54CXu-y2LgHOa8CfOgP-gGhD7EMGcLB4cm6Z6rzuoYRdh-cOv4UOT3TOEB2kW3RltU9wd55D9D17_pq-kvny5W06nhNT0DITTaWiwlqqWimEKKCteFXbVhfW2IIDL0puVkZKrSSrWCkKaUHVqwqU0ZxRPkT01GtiSCmCbXbRbXU8NIw2R2HN0U5ztNOchPXIwwlxYddswj52_YP_x38BYAdsBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</title><source>Institute of Physics Journals</source><creator>Tredenick, E. C. ; Wheeler, S. ; Drummond, R. ; Sun, Y. ; Duncan, S. R. ; Grant, P. S.</creator><creatorcontrib>Tredenick, E. C. ; Wheeler, S. ; Drummond, R. ; Sun, Y. ; Duncan, S. R. ; Grant, P. S.</creatorcontrib><description>Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad5767</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>battery ; bilayer ; Doyle-Fuller-Newman ; fast charging ; lithium-ion ; Multilayer-Doyle-Fuller-Newman ; optimisation</subject><ispartof>Journal of the Electrochemical Society, 2024-06, Vol.171 (6), p.60531</ispartof><rights>2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-a08904ff09d84442ed6367fda2fcf23e3253cbc88a981615428fe97b6e9ca3103</cites><orcidid>0000-0001-8661-8642 ; 0000-0002-4503-4621 ; 0000-0002-9525-7305 ; 0000-0002-2586-1718 ; 0000-0001-9105-2858 ; 0000-0002-7942-7837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ad5767/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Tredenick, E. C.</creatorcontrib><creatorcontrib>Wheeler, S.</creatorcontrib><creatorcontrib>Drummond, R.</creatorcontrib><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duncan, S. R.</creatorcontrib><creatorcontrib>Grant, P. S.</creatorcontrib><title>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness.</description><subject>battery</subject><subject>bilayer</subject><subject>Doyle-Fuller-Newman</subject><subject>fast charging</subject><subject>lithium-ion</subject><subject>Multilayer-Doyle-Fuller-Newman</subject><subject>optimisation</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kMFKAzEQhoMoWKt3j3kAY5NNdjc5ttWq0FoRPS9pdkJT0k1JUqRv75YWb56GGf7vZ_gQumf0kTGhRkyJktSMsZFuy7qqL9Dg73SJBpQyTkRVsmt0k9KmX5kU9QCFMV7sfXZeHyDip3DwQGZ77yGSd_jZ6g4vQgse54CXu-y2LgHOa8CfOgP-gGhD7EMGcLB4cm6Z6rzuoYRdh-cOv4UOT3TOEB2kW3RltU9wd55D9D17_pq-kvny5W06nhNT0DITTaWiwlqqWimEKKCteFXbVhfW2IIDL0puVkZKrSSrWCkKaUHVqwqU0ZxRPkT01GtiSCmCbXbRbXU8NIw2R2HN0U5ztNOchPXIwwlxYddswj52_YP_x38BYAdsBQ</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Tredenick, E. C.</creator><creator>Wheeler, S.</creator><creator>Drummond, R.</creator><creator>Sun, Y.</creator><creator>Duncan, S. R.</creator><creator>Grant, P. S.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8661-8642</orcidid><orcidid>https://orcid.org/0000-0002-4503-4621</orcidid><orcidid>https://orcid.org/0000-0002-9525-7305</orcidid><orcidid>https://orcid.org/0000-0002-2586-1718</orcidid><orcidid>https://orcid.org/0000-0001-9105-2858</orcidid><orcidid>https://orcid.org/0000-0002-7942-7837</orcidid></search><sort><creationdate>20240603</creationdate><title>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</title><author>Tredenick, E. C. ; Wheeler, S. ; Drummond, R. ; Sun, Y. ; Duncan, S. R. ; Grant, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-a08904ff09d84442ed6367fda2fcf23e3253cbc88a981615428fe97b6e9ca3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>battery</topic><topic>bilayer</topic><topic>Doyle-Fuller-Newman</topic><topic>fast charging</topic><topic>lithium-ion</topic><topic>Multilayer-Doyle-Fuller-Newman</topic><topic>optimisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tredenick, E. C.</creatorcontrib><creatorcontrib>Wheeler, S.</creatorcontrib><creatorcontrib>Drummond, R.</creatorcontrib><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duncan, S. R.</creatorcontrib><creatorcontrib>Grant, P. S.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tredenick, E. C.</au><au>Wheeler, S.</au><au>Drummond, R.</au><au>Sun, Y.</au><au>Duncan, S. R.</au><au>Grant, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>171</volume><issue>6</issue><spage>60531</spage><pages>60531-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ad5767</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8661-8642</orcidid><orcidid>https://orcid.org/0000-0002-4503-4621</orcidid><orcidid>https://orcid.org/0000-0002-9525-7305</orcidid><orcidid>https://orcid.org/0000-0002-2586-1718</orcidid><orcidid>https://orcid.org/0000-0001-9105-2858</orcidid><orcidid>https://orcid.org/0000-0002-7942-7837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2024-06, Vol.171 (6), p.60531 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_iop_journals_10_1149_1945_7111_ad5767 |
source | Institute of Physics Journals |
subjects | battery bilayer Doyle-Fuller-Newman fast charging lithium-ion Multilayer-Doyle-Fuller-Newman optimisation |
title | A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multilayer%20Doyle-Fuller-Newman%20Model%20to%20Optimise%20the%20Rate%20Performance%20of%20Bilayer%20Cathodes%20in%20Li%20Ion%20Batteries&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Tredenick,%20E.%20C.&rft.date=2024-06-03&rft.volume=171&rft.issue=6&rft.spage=60531&rft.pages=60531-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ad5767&rft_dat=%3Ciop_cross%3Ejesad5767%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |