A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries

Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2024-06, Vol.171 (6), p.60531
Hauptverfasser: Tredenick, E. C., Wheeler, S., Drummond, R., Sun, Y., Duncan, S. R., Grant, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 60531
container_title Journal of the Electrochemical Society
container_volume 171
creator Tredenick, E. C.
Wheeler, S.
Drummond, R.
Sun, Y.
Duncan, S. R.
Grant, P. S.
description Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness.
doi_str_mv 10.1149/1945-7111/ad5767
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_1945_7111_ad5767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesad5767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-a08904ff09d84442ed6367fda2fcf23e3253cbc88a981615428fe97b6e9ca3103</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j3kAY5NNdjc5ttWq0FoRPS9pdkJT0k1JUqRv75YWb56GGf7vZ_gQumf0kTGhRkyJktSMsZFuy7qqL9Dg73SJBpQyTkRVsmt0k9KmX5kU9QCFMV7sfXZeHyDip3DwQGZ77yGSd_jZ6g4vQgse54CXu-y2LgHOa8CfOgP-gGhD7EMGcLB4cm6Z6rzuoYRdh-cOv4UOT3TOEB2kW3RltU9wd55D9D17_pq-kvny5W06nhNT0DITTaWiwlqqWimEKKCteFXbVhfW2IIDL0puVkZKrSSrWCkKaUHVqwqU0ZxRPkT01GtiSCmCbXbRbXU8NIw2R2HN0U5ztNOchPXIwwlxYddswj52_YP_x38BYAdsBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</title><source>Institute of Physics Journals</source><creator>Tredenick, E. C. ; Wheeler, S. ; Drummond, R. ; Sun, Y. ; Duncan, S. R. ; Grant, P. S.</creator><creatorcontrib>Tredenick, E. C. ; Wheeler, S. ; Drummond, R. ; Sun, Y. ; Duncan, S. R. ; Grant, P. S.</creatorcontrib><description>Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad5767</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>battery ; bilayer ; Doyle-Fuller-Newman ; fast charging ; lithium-ion ; Multilayer-Doyle-Fuller-Newman ; optimisation</subject><ispartof>Journal of the Electrochemical Society, 2024-06, Vol.171 (6), p.60531</ispartof><rights>2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-a08904ff09d84442ed6367fda2fcf23e3253cbc88a981615428fe97b6e9ca3103</cites><orcidid>0000-0001-8661-8642 ; 0000-0002-4503-4621 ; 0000-0002-9525-7305 ; 0000-0002-2586-1718 ; 0000-0001-9105-2858 ; 0000-0002-7942-7837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ad5767/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Tredenick, E. C.</creatorcontrib><creatorcontrib>Wheeler, S.</creatorcontrib><creatorcontrib>Drummond, R.</creatorcontrib><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duncan, S. R.</creatorcontrib><creatorcontrib>Grant, P. S.</creatorcontrib><title>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness.</description><subject>battery</subject><subject>bilayer</subject><subject>Doyle-Fuller-Newman</subject><subject>fast charging</subject><subject>lithium-ion</subject><subject>Multilayer-Doyle-Fuller-Newman</subject><subject>optimisation</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kMFKAzEQhoMoWKt3j3kAY5NNdjc5ttWq0FoRPS9pdkJT0k1JUqRv75YWb56GGf7vZ_gQumf0kTGhRkyJktSMsZFuy7qqL9Dg73SJBpQyTkRVsmt0k9KmX5kU9QCFMV7sfXZeHyDip3DwQGZ77yGSd_jZ6g4vQgse54CXu-y2LgHOa8CfOgP-gGhD7EMGcLB4cm6Z6rzuoYRdh-cOv4UOT3TOEB2kW3RltU9wd55D9D17_pq-kvny5W06nhNT0DITTaWiwlqqWimEKKCteFXbVhfW2IIDL0puVkZKrSSrWCkKaUHVqwqU0ZxRPkT01GtiSCmCbXbRbXU8NIw2R2HN0U5ztNOchPXIwwlxYddswj52_YP_x38BYAdsBQ</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Tredenick, E. C.</creator><creator>Wheeler, S.</creator><creator>Drummond, R.</creator><creator>Sun, Y.</creator><creator>Duncan, S. R.</creator><creator>Grant, P. S.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8661-8642</orcidid><orcidid>https://orcid.org/0000-0002-4503-4621</orcidid><orcidid>https://orcid.org/0000-0002-9525-7305</orcidid><orcidid>https://orcid.org/0000-0002-2586-1718</orcidid><orcidid>https://orcid.org/0000-0001-9105-2858</orcidid><orcidid>https://orcid.org/0000-0002-7942-7837</orcidid></search><sort><creationdate>20240603</creationdate><title>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</title><author>Tredenick, E. C. ; Wheeler, S. ; Drummond, R. ; Sun, Y. ; Duncan, S. R. ; Grant, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-a08904ff09d84442ed6367fda2fcf23e3253cbc88a981615428fe97b6e9ca3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>battery</topic><topic>bilayer</topic><topic>Doyle-Fuller-Newman</topic><topic>fast charging</topic><topic>lithium-ion</topic><topic>Multilayer-Doyle-Fuller-Newman</topic><topic>optimisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tredenick, E. C.</creatorcontrib><creatorcontrib>Wheeler, S.</creatorcontrib><creatorcontrib>Drummond, R.</creatorcontrib><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duncan, S. R.</creatorcontrib><creatorcontrib>Grant, P. S.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tredenick, E. C.</au><au>Wheeler, S.</au><au>Drummond, R.</au><au>Sun, Y.</au><au>Duncan, S. R.</au><au>Grant, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>171</volume><issue>6</issue><spage>60531</spage><pages>60531-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Bilayer cathodes comprising two active materials are explored for their ability to improve lithium-ion battery charging performance. Electrodes are manufactured with various arrangements of lithium nickel manganese cobalt oxide Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NMC622) and lithium iron phosphate LiFePO 4 (LFP) active particles, including in two different discrete sub-layers. We present experimental data on the sensitivity of the electrode C rate performance to the electrode design. To understand the complex bilayer electrode performance, and to identify an optimal design for fast charging, we develop an extension to the Doyle-Fuller-Newman (DFN) model of electrode dynamics that accommodates different active materials in any number of sub-layers, termed the multilayer DFN (M-DFN) model. The M-DFN model is validated against experimental data and then used to explain the performance differences between the electrode arrangements. We show how the different open circuit potential functions of NMC and LFP can be exploited synergistically through electrode design. Manipulating the Li electrolyte concentration increases achievable capacity. Finally the M-DFN model is used to further optimize the best performing bilayer electrode arrangement by adjusting the ratio of the LFP and NMC sub-layer thickness.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ad5767</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8661-8642</orcidid><orcidid>https://orcid.org/0000-0002-4503-4621</orcidid><orcidid>https://orcid.org/0000-0002-9525-7305</orcidid><orcidid>https://orcid.org/0000-0002-2586-1718</orcidid><orcidid>https://orcid.org/0000-0001-9105-2858</orcidid><orcidid>https://orcid.org/0000-0002-7942-7837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2024-06, Vol.171 (6), p.60531
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_1945_7111_ad5767
source Institute of Physics Journals
subjects battery
bilayer
Doyle-Fuller-Newman
fast charging
lithium-ion
Multilayer-Doyle-Fuller-Newman
optimisation
title A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multilayer%20Doyle-Fuller-Newman%20Model%20to%20Optimise%20the%20Rate%20Performance%20of%20Bilayer%20Cathodes%20in%20Li%20Ion%20Batteries&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Tredenick,%20E.%20C.&rft.date=2024-06-03&rft.volume=171&rft.issue=6&rft.spage=60531&rft.pages=60531-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ad5767&rft_dat=%3Ciop_cross%3Ejesad5767%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true