A Balancing Act: Experimental Insights into the Volume Fraction of Conductive Additive in Lithium-Ion Battery Electrodes

Lithium-ion battery electrodes are traditionally comprised of a cathode or anode material, a carbon conductive additive, and a polymeric binder. The conductive additive and binder are traditionally considered electrochemically inactive; however, the organization of the carbon-binder matrix in 3D spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2024-06, Vol.171 (6), p.60525
Hauptverfasser: Lauro, Samantha N., Broekhuis, Benjamin G., Papa, Philippe E., Rastogi, Aashi, Burrow, James N., Ellison, Christopher J., Mullins, C. Buddie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 60525
container_title Journal of the Electrochemical Society
container_volume 171
creator Lauro, Samantha N.
Broekhuis, Benjamin G.
Papa, Philippe E.
Rastogi, Aashi
Burrow, James N.
Ellison, Christopher J.
Mullins, C. Buddie
description Lithium-ion battery electrodes are traditionally comprised of a cathode or anode material, a carbon conductive additive, and a polymeric binder. The conductive additive and binder are traditionally considered electrochemically inactive; however, the organization of the carbon-binder matrix in 3D space significantly alters electrode physical properties such as electrical conductivity and porosity, resulting in changes to electrochemical performance. While many experimental studies have altered the mass fraction and type of conductive additive, this study systematically studies the volume fraction of electrode components. Electrodes composed of lithium titanate (LTO) active material and SuperP conductive additive across six different electrode compositions from 20–70 vol% LTO and three different electrode film thicknesses of approximately 70, 125, and 225 μ m were evaluated. Electrode structures were observed via scanning electron microscopy and electronic conductivities were measured with 4-point probe analysis. Notably, electrochemical performance described as different figures of merit are maximized for different electrode compositions. For example, while thin electrodes with maximal volume fractions of LTO achieve superior volumetric energy density, power density is maximized for thicker electrodes with an optimal volume fraction of conductive additive. This study demonstrates the importance of balancing overpotential arising from ohmic drop and concentration polarization.
doi_str_mv 10.1149/1945-7111/ad5626
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_1945_7111_ad5626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesad5626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-69c513afb2c8c306c0310890096e6fcfb82d4faef8546cf6e6a2bcb8f991eb003</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM3pkIODLh5uwpVULlSqxAKvlOHbrKrUj20Htf49LERNiurun9053P4RugTwA5NUjVHmRTADgkbcFTekZGv1K52hECGRJTgu4RFfeb-MIZT4ZoX2Np7zjRmizxrUIT3i-76XTO2kC7_DSeL3eBI-1CRaHjcQftht2Ei8cF0Fbg63CM2vaIU6fEtdtq78bbfBKh40edskyuqY8BOkOeN5JEZxtpb9GF4p3Xt781DF6X8zfZi_J6vV5OatXichIGRJaiQIyrppUlFGhgmRAyoqQikqqhGrKtM0Vl6oscipUFHnaiKZUVQWyISQbI3LaK5z13knF-vgddwcGhB3JsSMmdsTETuRi5P4U0bZnWzs4Ew_8z373h30rY2QCjDJCSZEWrG9V9gW1EH4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Balancing Act: Experimental Insights into the Volume Fraction of Conductive Additive in Lithium-Ion Battery Electrodes</title><source>IOP Publishing Journals</source><creator>Lauro, Samantha N. ; Broekhuis, Benjamin G. ; Papa, Philippe E. ; Rastogi, Aashi ; Burrow, James N. ; Ellison, Christopher J. ; Mullins, C. Buddie</creator><creatorcontrib>Lauro, Samantha N. ; Broekhuis, Benjamin G. ; Papa, Philippe E. ; Rastogi, Aashi ; Burrow, James N. ; Ellison, Christopher J. ; Mullins, C. Buddie</creatorcontrib><description>Lithium-ion battery electrodes are traditionally comprised of a cathode or anode material, a carbon conductive additive, and a polymeric binder. The conductive additive and binder are traditionally considered electrochemically inactive; however, the organization of the carbon-binder matrix in 3D space significantly alters electrode physical properties such as electrical conductivity and porosity, resulting in changes to electrochemical performance. While many experimental studies have altered the mass fraction and type of conductive additive, this study systematically studies the volume fraction of electrode components. Electrodes composed of lithium titanate (LTO) active material and SuperP conductive additive across six different electrode compositions from 20–70 vol% LTO and three different electrode film thicknesses of approximately 70, 125, and 225 μ m were evaluated. Electrode structures were observed via scanning electron microscopy and electronic conductivities were measured with 4-point probe analysis. Notably, electrochemical performance described as different figures of merit are maximized for different electrode compositions. For example, while thin electrodes with maximal volume fractions of LTO achieve superior volumetric energy density, power density is maximized for thicker electrodes with an optimal volume fraction of conductive additive. This study demonstrates the importance of balancing overpotential arising from ohmic drop and concentration polarization.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad5626</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>batteries ; conductive additive ; loading</subject><ispartof>Journal of the Electrochemical Society, 2024-06, Vol.171 (6), p.60525</ispartof><rights>2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-69c513afb2c8c306c0310890096e6fcfb82d4faef8546cf6e6a2bcb8f991eb003</cites><orcidid>0000-0003-2372-8822 ; 0009-0006-2456-2309 ; 0000-0002-7445-3788 ; 0000-0003-4771-9795 ; 0000-0002-0393-2941 ; 0000-0003-2380-6894 ; 0000-0003-1030-4801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ad5626/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Lauro, Samantha N.</creatorcontrib><creatorcontrib>Broekhuis, Benjamin G.</creatorcontrib><creatorcontrib>Papa, Philippe E.</creatorcontrib><creatorcontrib>Rastogi, Aashi</creatorcontrib><creatorcontrib>Burrow, James N.</creatorcontrib><creatorcontrib>Ellison, Christopher J.</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><title>A Balancing Act: Experimental Insights into the Volume Fraction of Conductive Additive in Lithium-Ion Battery Electrodes</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Lithium-ion battery electrodes are traditionally comprised of a cathode or anode material, a carbon conductive additive, and a polymeric binder. The conductive additive and binder are traditionally considered electrochemically inactive; however, the organization of the carbon-binder matrix in 3D space significantly alters electrode physical properties such as electrical conductivity and porosity, resulting in changes to electrochemical performance. While many experimental studies have altered the mass fraction and type of conductive additive, this study systematically studies the volume fraction of electrode components. Electrodes composed of lithium titanate (LTO) active material and SuperP conductive additive across six different electrode compositions from 20–70 vol% LTO and three different electrode film thicknesses of approximately 70, 125, and 225 μ m were evaluated. Electrode structures were observed via scanning electron microscopy and electronic conductivities were measured with 4-point probe analysis. Notably, electrochemical performance described as different figures of merit are maximized for different electrode compositions. For example, while thin electrodes with maximal volume fractions of LTO achieve superior volumetric energy density, power density is maximized for thicker electrodes with an optimal volume fraction of conductive additive. This study demonstrates the importance of balancing overpotential arising from ohmic drop and concentration polarization.</description><subject>batteries</subject><subject>conductive additive</subject><subject>loading</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwM3pkIODLh5uwpVULlSqxAKvlOHbrKrUj20Htf49LERNiurun9053P4RugTwA5NUjVHmRTADgkbcFTekZGv1K52hECGRJTgu4RFfeb-MIZT4ZoX2Np7zjRmizxrUIT3i-76XTO2kC7_DSeL3eBI-1CRaHjcQftht2Ei8cF0Fbg63CM2vaIU6fEtdtq78bbfBKh40edskyuqY8BOkOeN5JEZxtpb9GF4p3Xt781DF6X8zfZi_J6vV5OatXichIGRJaiQIyrppUlFGhgmRAyoqQikqqhGrKtM0Vl6oscipUFHnaiKZUVQWyISQbI3LaK5z13knF-vgddwcGhB3JsSMmdsTETuRi5P4U0bZnWzs4Ew_8z373h30rY2QCjDJCSZEWrG9V9gW1EH4C</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Lauro, Samantha N.</creator><creator>Broekhuis, Benjamin G.</creator><creator>Papa, Philippe E.</creator><creator>Rastogi, Aashi</creator><creator>Burrow, James N.</creator><creator>Ellison, Christopher J.</creator><creator>Mullins, C. Buddie</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2372-8822</orcidid><orcidid>https://orcid.org/0009-0006-2456-2309</orcidid><orcidid>https://orcid.org/0000-0002-7445-3788</orcidid><orcidid>https://orcid.org/0000-0003-4771-9795</orcidid><orcidid>https://orcid.org/0000-0002-0393-2941</orcidid><orcidid>https://orcid.org/0000-0003-2380-6894</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid></search><sort><creationdate>20240603</creationdate><title>A Balancing Act: Experimental Insights into the Volume Fraction of Conductive Additive in Lithium-Ion Battery Electrodes</title><author>Lauro, Samantha N. ; Broekhuis, Benjamin G. ; Papa, Philippe E. ; Rastogi, Aashi ; Burrow, James N. ; Ellison, Christopher J. ; Mullins, C. Buddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-69c513afb2c8c306c0310890096e6fcfb82d4faef8546cf6e6a2bcb8f991eb003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>batteries</topic><topic>conductive additive</topic><topic>loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauro, Samantha N.</creatorcontrib><creatorcontrib>Broekhuis, Benjamin G.</creatorcontrib><creatorcontrib>Papa, Philippe E.</creatorcontrib><creatorcontrib>Rastogi, Aashi</creatorcontrib><creatorcontrib>Burrow, James N.</creatorcontrib><creatorcontrib>Ellison, Christopher J.</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauro, Samantha N.</au><au>Broekhuis, Benjamin G.</au><au>Papa, Philippe E.</au><au>Rastogi, Aashi</au><au>Burrow, James N.</au><au>Ellison, Christopher J.</au><au>Mullins, C. Buddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Balancing Act: Experimental Insights into the Volume Fraction of Conductive Additive in Lithium-Ion Battery Electrodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>171</volume><issue>6</issue><spage>60525</spage><pages>60525-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Lithium-ion battery electrodes are traditionally comprised of a cathode or anode material, a carbon conductive additive, and a polymeric binder. The conductive additive and binder are traditionally considered electrochemically inactive; however, the organization of the carbon-binder matrix in 3D space significantly alters electrode physical properties such as electrical conductivity and porosity, resulting in changes to electrochemical performance. While many experimental studies have altered the mass fraction and type of conductive additive, this study systematically studies the volume fraction of electrode components. Electrodes composed of lithium titanate (LTO) active material and SuperP conductive additive across six different electrode compositions from 20–70 vol% LTO and three different electrode film thicknesses of approximately 70, 125, and 225 μ m were evaluated. Electrode structures were observed via scanning electron microscopy and electronic conductivities were measured with 4-point probe analysis. Notably, electrochemical performance described as different figures of merit are maximized for different electrode compositions. For example, while thin electrodes with maximal volume fractions of LTO achieve superior volumetric energy density, power density is maximized for thicker electrodes with an optimal volume fraction of conductive additive. This study demonstrates the importance of balancing overpotential arising from ohmic drop and concentration polarization.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ad5626</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2372-8822</orcidid><orcidid>https://orcid.org/0009-0006-2456-2309</orcidid><orcidid>https://orcid.org/0000-0002-7445-3788</orcidid><orcidid>https://orcid.org/0000-0003-4771-9795</orcidid><orcidid>https://orcid.org/0000-0002-0393-2941</orcidid><orcidid>https://orcid.org/0000-0003-2380-6894</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2024-06, Vol.171 (6), p.60525
issn 0013-4651
1945-7111
language eng
recordid cdi_iop_journals_10_1149_1945_7111_ad5626
source IOP Publishing Journals
subjects batteries
conductive additive
loading
title A Balancing Act: Experimental Insights into the Volume Fraction of Conductive Additive in Lithium-Ion Battery Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Balancing%20Act:%20Experimental%20Insights%20into%20the%20Volume%20Fraction%20of%20Conductive%20Additive%20in%20Lithium-Ion%20Battery%20Electrodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Lauro,%20Samantha%20N.&rft.date=2024-06-03&rft.volume=171&rft.issue=6&rft.spage=60525&rft.pages=60525-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ad5626&rft_dat=%3Ciop_cross%3Ejesad5626%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true