Understanding Performance Limitation of Liquid Alkaline Water Electrolyzers
Liquid alkaline water electrolyzers (LAWEs), being the most commercially mature electrolysis technology, play a pivotal role in large-scale hydrogen production. However, LAWEs suffer from low operational efficiency, primarily due to un-optimized electrode structure and chemical compositions. Thus, w...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2024-06, Vol.171 (6) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of the Electrochemical Society |
container_volume | 171 |
creator | Wang, Guanzhi Tricker, Andrew Lang, Jack T. Wang, Jianxin Zenyuk, Iryna Liu, Di-Jia Mukundan, Rangachary Peng, Xiong |
description | Liquid alkaline water electrolyzers (LAWEs), being the most commercially mature electrolysis technology, play a pivotal role in large-scale hydrogen production. However, LAWEs suffer from low operational efficiency, primarily due to un-optimized electrode structure and chemical compositions. Thus, we investigated how various electrode configurations could impact LAWE performance. Our results show that Ni felt electrodes outperform the conventional Ni foam thanks to improved electrochemical active surface area (ECSA) and preferred electrode surface structure that minimizes the micro-gaps in between the electrode and separator. By comparing the stainless steel (SS) felt electrodes with Ni felt electrodes, SS not only shows better oxygen evolution reaction activity but also improved hydrogen evolution reaction activity, which is less studied in the literature. We also show that a bilayer structure with small pore radius facing the separator could further improve LAWE performance by further optimizing interfacial contact between electrode and separator. These findings enable LAWEs to sustain 2 A cm-2 at 2.2 V and operate steadily at 1 A cm-2 for nearly 600 h with negligible performance decay. Our studies establish criteria for selecting electrodes to achieve high-performance LAWE and, in turn, expedite the adoption of LAWEs in hydrogen production and the transition towards low-carbon economies. |
doi_str_mv | 10.1149/1945-7111/ad4fe6 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_1945_7111_ad4fe6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesad4fe6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-da3483576ad3f9a329207438c5ee6e8d022618074c5c84100924d3ba70c373db3</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMLOmJGBUL_YsZ2xqkpBVIKBitFy_YFcUrs46VB-PY6KmBDT053uTu8OoWvAdwC0mUBD65IDwEQZ6iw7QaNf6hSNMAZSUlbDObrouk2GICgfoadVMDZ1vQrGh_fixSYX01YFbYul3_pe9T6GIrqMPvfeFNP2Q7U-2OJN9TYV89bqPsX28JVDLtGZU21nr37uGK3u56-zh3L5vHicTZelrojoS6MIFaTmTBniGkWqpsKcEqFra5kVBlcVA5EpXWtBAeOmooasFceacGLWZIzwMVen2HXJOrlLfqvSQQKWwxhyaC6H5vI4RrbcHi0-7uQm7lPID_4nv_lDvrHZwkEyiRmtMcidceQblRxuOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Performance Limitation of Liquid Alkaline Water Electrolyzers</title><source>Institute of Physics Journals</source><creator>Wang, Guanzhi ; Tricker, Andrew ; Lang, Jack T. ; Wang, Jianxin ; Zenyuk, Iryna ; Liu, Di-Jia ; Mukundan, Rangachary ; Peng, Xiong</creator><creatorcontrib>Wang, Guanzhi ; Tricker, Andrew ; Lang, Jack T. ; Wang, Jianxin ; Zenyuk, Iryna ; Liu, Di-Jia ; Mukundan, Rangachary ; Peng, Xiong</creatorcontrib><description>Liquid alkaline water electrolyzers (LAWEs), being the most commercially mature electrolysis technology, play a pivotal role in large-scale hydrogen production. However, LAWEs suffer from low operational efficiency, primarily due to un-optimized electrode structure and chemical compositions. Thus, we investigated how various electrode configurations could impact LAWE performance. Our results show that Ni felt electrodes outperform the conventional Ni foam thanks to improved electrochemical active surface area (ECSA) and preferred electrode surface structure that minimizes the micro-gaps in between the electrode and separator. By comparing the stainless steel (SS) felt electrodes with Ni felt electrodes, SS not only shows better oxygen evolution reaction activity but also improved hydrogen evolution reaction activity, which is less studied in the literature. We also show that a bilayer structure with small pore radius facing the separator could further improve LAWE performance by further optimizing interfacial contact between electrode and separator. These findings enable LAWEs to sustain 2 A cm-2 at 2.2 V and operate steadily at 1 A cm-2 for nearly 600 h with negligible performance decay. Our studies establish criteria for selecting electrodes to achieve high-performance LAWE and, in turn, expedite the adoption of LAWEs in hydrogen production and the transition towards low-carbon economies.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad4fe6</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>efficiencies ; electrodes ; hydrogen ; liquid alkaline ; water electrolyzer</subject><ispartof>Journal of the Electrochemical Society, 2024-06, Vol.171 (6)</ispartof><rights>2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3060-0475 ; 0000-0002-5094-5630 ; 0000-0002-5679-3930 ; 0000-0002-1612-0475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ad4fe6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Wang, Guanzhi</creatorcontrib><creatorcontrib>Tricker, Andrew</creatorcontrib><creatorcontrib>Lang, Jack T.</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><creatorcontrib>Zenyuk, Iryna</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><creatorcontrib>Peng, Xiong</creatorcontrib><title>Understanding Performance Limitation of Liquid Alkaline Water Electrolyzers</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Liquid alkaline water electrolyzers (LAWEs), being the most commercially mature electrolysis technology, play a pivotal role in large-scale hydrogen production. However, LAWEs suffer from low operational efficiency, primarily due to un-optimized electrode structure and chemical compositions. Thus, we investigated how various electrode configurations could impact LAWE performance. Our results show that Ni felt electrodes outperform the conventional Ni foam thanks to improved electrochemical active surface area (ECSA) and preferred electrode surface structure that minimizes the micro-gaps in between the electrode and separator. By comparing the stainless steel (SS) felt electrodes with Ni felt electrodes, SS not only shows better oxygen evolution reaction activity but also improved hydrogen evolution reaction activity, which is less studied in the literature. We also show that a bilayer structure with small pore radius facing the separator could further improve LAWE performance by further optimizing interfacial contact between electrode and separator. These findings enable LAWEs to sustain 2 A cm-2 at 2.2 V and operate steadily at 1 A cm-2 for nearly 600 h with negligible performance decay. Our studies establish criteria for selecting electrodes to achieve high-performance LAWE and, in turn, expedite the adoption of LAWEs in hydrogen production and the transition towards low-carbon economies.</description><subject>efficiencies</subject><subject>electrodes</subject><subject>hydrogen</subject><subject>liquid alkaline</subject><subject>water electrolyzer</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAUtBBIlMLOmJGBUL_YsZ2xqkpBVIKBitFy_YFcUrs46VB-PY6KmBDT053uTu8OoWvAdwC0mUBD65IDwEQZ6iw7QaNf6hSNMAZSUlbDObrouk2GICgfoadVMDZ1vQrGh_fixSYX01YFbYul3_pe9T6GIrqMPvfeFNP2Q7U-2OJN9TYV89bqPsX28JVDLtGZU21nr37uGK3u56-zh3L5vHicTZelrojoS6MIFaTmTBniGkWqpsKcEqFra5kVBlcVA5EpXWtBAeOmooasFceacGLWZIzwMVen2HXJOrlLfqvSQQKWwxhyaC6H5vI4RrbcHi0-7uQm7lPID_4nv_lDvrHZwkEyiRmtMcidceQblRxuOg</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Wang, Guanzhi</creator><creator>Tricker, Andrew</creator><creator>Lang, Jack T.</creator><creator>Wang, Jianxin</creator><creator>Zenyuk, Iryna</creator><creator>Liu, Di-Jia</creator><creator>Mukundan, Rangachary</creator><creator>Peng, Xiong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3060-0475</orcidid><orcidid>https://orcid.org/0000-0002-5094-5630</orcidid><orcidid>https://orcid.org/0000-0002-5679-3930</orcidid><orcidid>https://orcid.org/0000-0002-1612-0475</orcidid></search><sort><creationdate>20240604</creationdate><title>Understanding Performance Limitation of Liquid Alkaline Water Electrolyzers</title><author>Wang, Guanzhi ; Tricker, Andrew ; Lang, Jack T. ; Wang, Jianxin ; Zenyuk, Iryna ; Liu, Di-Jia ; Mukundan, Rangachary ; Peng, Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-da3483576ad3f9a329207438c5ee6e8d022618074c5c84100924d3ba70c373db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>efficiencies</topic><topic>electrodes</topic><topic>hydrogen</topic><topic>liquid alkaline</topic><topic>water electrolyzer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guanzhi</creatorcontrib><creatorcontrib>Tricker, Andrew</creatorcontrib><creatorcontrib>Lang, Jack T.</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><creatorcontrib>Zenyuk, Iryna</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><creatorcontrib>Peng, Xiong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guanzhi</au><au>Tricker, Andrew</au><au>Lang, Jack T.</au><au>Wang, Jianxin</au><au>Zenyuk, Iryna</au><au>Liu, Di-Jia</au><au>Mukundan, Rangachary</au><au>Peng, Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Performance Limitation of Liquid Alkaline Water Electrolyzers</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>171</volume><issue>6</issue><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Liquid alkaline water electrolyzers (LAWEs), being the most commercially mature electrolysis technology, play a pivotal role in large-scale hydrogen production. However, LAWEs suffer from low operational efficiency, primarily due to un-optimized electrode structure and chemical compositions. Thus, we investigated how various electrode configurations could impact LAWE performance. Our results show that Ni felt electrodes outperform the conventional Ni foam thanks to improved electrochemical active surface area (ECSA) and preferred electrode surface structure that minimizes the micro-gaps in between the electrode and separator. By comparing the stainless steel (SS) felt electrodes with Ni felt electrodes, SS not only shows better oxygen evolution reaction activity but also improved hydrogen evolution reaction activity, which is less studied in the literature. We also show that a bilayer structure with small pore radius facing the separator could further improve LAWE performance by further optimizing interfacial contact between electrode and separator. These findings enable LAWEs to sustain 2 A cm-2 at 2.2 V and operate steadily at 1 A cm-2 for nearly 600 h with negligible performance decay. Our studies establish criteria for selecting electrodes to achieve high-performance LAWE and, in turn, expedite the adoption of LAWEs in hydrogen production and the transition towards low-carbon economies.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ad4fe6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3060-0475</orcidid><orcidid>https://orcid.org/0000-0002-5094-5630</orcidid><orcidid>https://orcid.org/0000-0002-5679-3930</orcidid><orcidid>https://orcid.org/0000-0002-1612-0475</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2024-06, Vol.171 (6) |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_iop_journals_10_1149_1945_7111_ad4fe6 |
source | Institute of Physics Journals |
subjects | efficiencies electrodes hydrogen liquid alkaline water electrolyzer |
title | Understanding Performance Limitation of Liquid Alkaline Water Electrolyzers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Performance%20Limitation%20of%20Liquid%20Alkaline%20Water%20Electrolyzers&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Wang,%20Guanzhi&rft.date=2024-06-04&rft.volume=171&rft.issue=6&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ad4fe6&rft_dat=%3Ciop_cross%3Ejesad4fe6%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |