Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes
Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) ca...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2020-01, Vol.167 (2) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of the Electrochemical Society |
container_volume | 167 |
creator | Sahore, Ritu O'Hanlon, Daniel C. Tornheim, Adam Lee, Chang-Wook Garcia, Juan C. Iddir, Hakim Balasubramanian, Mahalingam Bloom, Ira |
description | Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage. |
doi_str_mv | 10.1149/1945-7111/ab6826 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_iop_journals_10_1149_1945_7111_ab6826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesab6826</sourcerecordid><originalsourceid>FETCH-LOGICAL-i294t-6afd448e9755e816303c45167f6f818073bc3aa8bb90fbdd70693e31321be9833</originalsourceid><addsrcrecordid>eNptkE1PwzAMQCMEEmNw5xhxGhJlcdMm6RE6vqR1k9A4R2mb0kxdMi0ZAn49rYY4cbJsP1v2Q-gSyC1Akk0hS9KIA8BUlUzE7AiN_krHaEQI0ChhKZyiM-_XfQoi4SO0ftUfxptg7DsOrcaFrlpljd_ge90aW-PVTtmh72xU6KA6PDPeu24_VHCzcxs8050JrVFB13huFuazsF-5-17GeLIo8mucq9C6WvtzdNKozuuL3zhGb48Pq_w5mi-fXvK7eWTiLAkRU02dJEJnPE21AEYJrZIUGG9YI0AQTsuKKiXKMiNNWdecsIxqCjSGUmeC0jG6Oux1PhjpKxP6nypnra6CBEY4o3EP3Rwg47Zy7fY7258kgchBphzMycGcPMjs8ck_-Fr3I4zLWJKYpEDltm7oDzfKdFE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</title><source>IOP Publishing Journals</source><creator>Sahore, Ritu ; O'Hanlon, Daniel C. ; Tornheim, Adam ; Lee, Chang-Wook ; Garcia, Juan C. ; Iddir, Hakim ; Balasubramanian, Mahalingam ; Bloom, Ira</creator><creatorcontrib>Sahore, Ritu ; O'Hanlon, Daniel C. ; Tornheim, Adam ; Lee, Chang-Wook ; Garcia, Juan C. ; Iddir, Hakim ; Balasubramanian, Mahalingam ; Bloom, Ira ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage.</description><identifier>ISSN: 0013-4651</identifier><identifier>ISSN: 1945-7111</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ab6826</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ENERGY STORAGE ; lithium-ion battery ; transition metal dissolution</subject><ispartof>Journal of the Electrochemical Society, 2020-01, Vol.167 (2)</ispartof><rights>2020 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ab6826/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1607632$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahore, Ritu</creatorcontrib><creatorcontrib>O'Hanlon, Daniel C.</creatorcontrib><creatorcontrib>Tornheim, Adam</creatorcontrib><creatorcontrib>Lee, Chang-Wook</creatorcontrib><creatorcontrib>Garcia, Juan C.</creatorcontrib><creatorcontrib>Iddir, Hakim</creatorcontrib><creatorcontrib>Balasubramanian, Mahalingam</creatorcontrib><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage.</description><subject>ENERGY STORAGE</subject><subject>lithium-ion battery</subject><subject>transition metal dissolution</subject><issn>0013-4651</issn><issn>1945-7111</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwzAMQCMEEmNw5xhxGhJlcdMm6RE6vqR1k9A4R2mb0kxdMi0ZAn49rYY4cbJsP1v2Q-gSyC1Akk0hS9KIA8BUlUzE7AiN_krHaEQI0ChhKZyiM-_XfQoi4SO0ftUfxptg7DsOrcaFrlpljd_ge90aW-PVTtmh72xU6KA6PDPeu24_VHCzcxs8050JrVFB13huFuazsF-5-17GeLIo8mucq9C6WvtzdNKozuuL3zhGb48Pq_w5mi-fXvK7eWTiLAkRU02dJEJnPE21AEYJrZIUGG9YI0AQTsuKKiXKMiNNWdecsIxqCjSGUmeC0jG6Oux1PhjpKxP6nypnra6CBEY4o3EP3Rwg47Zy7fY7258kgchBphzMycGcPMjs8ck_-Fr3I4zLWJKYpEDltm7oDzfKdFE</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Sahore, Ritu</creator><creator>O'Hanlon, Daniel C.</creator><creator>Tornheim, Adam</creator><creator>Lee, Chang-Wook</creator><creator>Garcia, Juan C.</creator><creator>Iddir, Hakim</creator><creator>Balasubramanian, Mahalingam</creator><creator>Bloom, Ira</creator><general>IOP Publishing</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200116</creationdate><title>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</title><author>Sahore, Ritu ; O'Hanlon, Daniel C. ; Tornheim, Adam ; Lee, Chang-Wook ; Garcia, Juan C. ; Iddir, Hakim ; Balasubramanian, Mahalingam ; Bloom, Ira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i294t-6afd448e9755e816303c45167f6f818073bc3aa8bb90fbdd70693e31321be9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENERGY STORAGE</topic><topic>lithium-ion battery</topic><topic>transition metal dissolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahore, Ritu</creatorcontrib><creatorcontrib>O'Hanlon, Daniel C.</creatorcontrib><creatorcontrib>Tornheim, Adam</creatorcontrib><creatorcontrib>Lee, Chang-Wook</creatorcontrib><creatorcontrib>Garcia, Juan C.</creatorcontrib><creatorcontrib>Iddir, Hakim</creatorcontrib><creatorcontrib>Balasubramanian, Mahalingam</creatorcontrib><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahore, Ritu</au><au>O'Hanlon, Daniel C.</au><au>Tornheim, Adam</au><au>Lee, Chang-Wook</au><au>Garcia, Juan C.</au><au>Iddir, Hakim</au><au>Balasubramanian, Mahalingam</au><au>Bloom, Ira</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2020-01-16</date><risdate>2020</risdate><volume>167</volume><issue>2</issue><issn>0013-4651</issn><issn>1945-7111</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ab6826</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2020-01, Vol.167 (2) |
issn | 0013-4651 1945-7111 1945-7111 |
language | eng |
recordid | cdi_iop_journals_10_1149_1945_7111_ab6826 |
source | IOP Publishing Journals |
subjects | ENERGY STORAGE lithium-ion battery transition metal dissolution |
title | Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Mechanism%20Behind%20Transition-Metal%20Dissolution%20from%20Delithiated%20LiNixMnyCozO2%20(NMC)%20Cathodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Sahore,%20Ritu&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-01-16&rft.volume=167&rft.issue=2&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ab6826&rft_dat=%3Ciop_osti_%3Ejesab6826%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |