Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes

Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2020-01, Vol.167 (2)
Hauptverfasser: Sahore, Ritu, O'Hanlon, Daniel C., Tornheim, Adam, Lee, Chang-Wook, Garcia, Juan C., Iddir, Hakim, Balasubramanian, Mahalingam, Bloom, Ira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of the Electrochemical Society
container_volume 167
creator Sahore, Ritu
O'Hanlon, Daniel C.
Tornheim, Adam
Lee, Chang-Wook
Garcia, Juan C.
Iddir, Hakim
Balasubramanian, Mahalingam
Bloom, Ira
description Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage.
doi_str_mv 10.1149/1945-7111/ab6826
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_iop_journals_10_1149_1945_7111_ab6826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesab6826</sourcerecordid><originalsourceid>FETCH-LOGICAL-i294t-6afd448e9755e816303c45167f6f818073bc3aa8bb90fbdd70693e31321be9833</originalsourceid><addsrcrecordid>eNptkE1PwzAMQCMEEmNw5xhxGhJlcdMm6RE6vqR1k9A4R2mb0kxdMi0ZAn49rYY4cbJsP1v2Q-gSyC1Akk0hS9KIA8BUlUzE7AiN_krHaEQI0ChhKZyiM-_XfQoi4SO0ftUfxptg7DsOrcaFrlpljd_ge90aW-PVTtmh72xU6KA6PDPeu24_VHCzcxs8050JrVFB13huFuazsF-5-17GeLIo8mucq9C6WvtzdNKozuuL3zhGb48Pq_w5mi-fXvK7eWTiLAkRU02dJEJnPE21AEYJrZIUGG9YI0AQTsuKKiXKMiNNWdecsIxqCjSGUmeC0jG6Oux1PhjpKxP6nypnra6CBEY4o3EP3Rwg47Zy7fY7258kgchBphzMycGcPMjs8ck_-Fr3I4zLWJKYpEDltm7oDzfKdFE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</title><source>IOP Publishing Journals</source><creator>Sahore, Ritu ; O'Hanlon, Daniel C. ; Tornheim, Adam ; Lee, Chang-Wook ; Garcia, Juan C. ; Iddir, Hakim ; Balasubramanian, Mahalingam ; Bloom, Ira</creator><creatorcontrib>Sahore, Ritu ; O'Hanlon, Daniel C. ; Tornheim, Adam ; Lee, Chang-Wook ; Garcia, Juan C. ; Iddir, Hakim ; Balasubramanian, Mahalingam ; Bloom, Ira ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage.</description><identifier>ISSN: 0013-4651</identifier><identifier>ISSN: 1945-7111</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ab6826</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ENERGY STORAGE ; lithium-ion battery ; transition metal dissolution</subject><ispartof>Journal of the Electrochemical Society, 2020-01, Vol.167 (2)</ispartof><rights>2020 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ab6826/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1607632$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahore, Ritu</creatorcontrib><creatorcontrib>O'Hanlon, Daniel C.</creatorcontrib><creatorcontrib>Tornheim, Adam</creatorcontrib><creatorcontrib>Lee, Chang-Wook</creatorcontrib><creatorcontrib>Garcia, Juan C.</creatorcontrib><creatorcontrib>Iddir, Hakim</creatorcontrib><creatorcontrib>Balasubramanian, Mahalingam</creatorcontrib><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage.</description><subject>ENERGY STORAGE</subject><subject>lithium-ion battery</subject><subject>transition metal dissolution</subject><issn>0013-4651</issn><issn>1945-7111</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwzAMQCMEEmNw5xhxGhJlcdMm6RE6vqR1k9A4R2mb0kxdMi0ZAn49rYY4cbJsP1v2Q-gSyC1Akk0hS9KIA8BUlUzE7AiN_krHaEQI0ChhKZyiM-_XfQoi4SO0ftUfxptg7DsOrcaFrlpljd_ge90aW-PVTtmh72xU6KA6PDPeu24_VHCzcxs8050JrVFB13huFuazsF-5-17GeLIo8mucq9C6WvtzdNKozuuL3zhGb48Pq_w5mi-fXvK7eWTiLAkRU02dJEJnPE21AEYJrZIUGG9YI0AQTsuKKiXKMiNNWdecsIxqCjSGUmeC0jG6Oux1PhjpKxP6nypnra6CBEY4o3EP3Rwg47Zy7fY7258kgchBphzMycGcPMjs8ck_-Fr3I4zLWJKYpEDltm7oDzfKdFE</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Sahore, Ritu</creator><creator>O'Hanlon, Daniel C.</creator><creator>Tornheim, Adam</creator><creator>Lee, Chang-Wook</creator><creator>Garcia, Juan C.</creator><creator>Iddir, Hakim</creator><creator>Balasubramanian, Mahalingam</creator><creator>Bloom, Ira</creator><general>IOP Publishing</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200116</creationdate><title>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</title><author>Sahore, Ritu ; O'Hanlon, Daniel C. ; Tornheim, Adam ; Lee, Chang-Wook ; Garcia, Juan C. ; Iddir, Hakim ; Balasubramanian, Mahalingam ; Bloom, Ira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i294t-6afd448e9755e816303c45167f6f818073bc3aa8bb90fbdd70693e31321be9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENERGY STORAGE</topic><topic>lithium-ion battery</topic><topic>transition metal dissolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahore, Ritu</creatorcontrib><creatorcontrib>O'Hanlon, Daniel C.</creatorcontrib><creatorcontrib>Tornheim, Adam</creatorcontrib><creatorcontrib>Lee, Chang-Wook</creatorcontrib><creatorcontrib>Garcia, Juan C.</creatorcontrib><creatorcontrib>Iddir, Hakim</creatorcontrib><creatorcontrib>Balasubramanian, Mahalingam</creatorcontrib><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahore, Ritu</au><au>O'Hanlon, Daniel C.</au><au>Tornheim, Adam</au><au>Lee, Chang-Wook</au><au>Garcia, Juan C.</au><au>Iddir, Hakim</au><au>Balasubramanian, Mahalingam</au><au>Bloom, Ira</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2020-01-16</date><risdate>2020</risdate><volume>167</volume><issue>2</issue><issn>0013-4651</issn><issn>1945-7111</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Dissolution of transition metals (TMs) from lithium-ion battery cathodes under high-voltage conditions is a major issue affecting battery performance that is not well understood mechanistically. Here, this phenomenon is studied by chemically aging pristine and charged LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes in the presence of different solutions. The solution composition was varied by 1) adding water to a standard electrolyte, 2) replacing LiPF6 salt with lithium acetylacetonate (Li-acac), 3) and/or adding oxidatively unstable tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an electrolyte additive. Our results demonstrate that while TM dissolution from pristine NMC532 cathodes is dominated by HF-attack, TM dissolution from charged NMC532 cathodes is affected by many other factors apart from HF-attack. We suggest that reduction of TMs due to chemical/electrochemical oxidation of the electrolyte at cathode/electrolyte interface, followed by formation of soluble TM-complexes with concomitant Li+ intercalation into the cathode, is the dominant mechanism of TM-dissolution at high voltage.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ab6826</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2020-01, Vol.167 (2)
issn 0013-4651
1945-7111
1945-7111
language eng
recordid cdi_iop_journals_10_1149_1945_7111_ab6826
source IOP Publishing Journals
subjects ENERGY STORAGE
lithium-ion battery
transition metal dissolution
title Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Mechanism%20Behind%20Transition-Metal%20Dissolution%20from%20Delithiated%20LiNixMnyCozO2%20(NMC)%20Cathodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Sahore,%20Ritu&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-01-16&rft.volume=167&rft.issue=2&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ab6826&rft_dat=%3Ciop_osti_%3Ejesab6826%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true