Illuminating Oxygen Reduction Reaction Kinetics in High Temperature Polymer Electrolyte Membrane Fuel Cells Using EIS

High Temperature Polymer Electrolyte Membrane Fuel Cells (HTPEMFCs) commercialization, is impeded by the sluggish, power intensive and elusive cathodic Oxygen Reduction Reaction (ORR) kinetics. In this work we provide solid experimental evidence that the simple three elementary step Dissociative Ads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2023-09, Vol.112 (4), p.101-114
Hauptverfasser: Giotakos, Panagiotis I., Neophytides, Stylianos G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 4
container_start_page 101
container_title ECS transactions
container_volume 112
creator Giotakos, Panagiotis I.
Neophytides, Stylianos G.
description High Temperature Polymer Electrolyte Membrane Fuel Cells (HTPEMFCs) commercialization, is impeded by the sluggish, power intensive and elusive cathodic Oxygen Reduction Reaction (ORR) kinetics. In this work we provide solid experimental evidence that the simple three elementary step Dissociative Adsorption (DA) pathway, with two intermediate species (O ad and OH ad ), can accurately describe the steady state (IV) and the Electrochemical Impedance Spectra (EIS) response of a HTPEMFC. Deconvoluted EIS outlined the important role of Intrinsic Kinetic Inertia , which dominated both EIS and polarization resistance. The Degree of Rate Control (DRC) analysis, identified the O 2(g) dissociative adsorption as the rate limiting step. Finally, Transition State Theory (TST) allowed the extraction and analysis of ORR energetics, demonstrating that the high ORR overpotential losses originate from the combined strength of both kinetically and thermodynamically imposed barriers, due to the high bonding strength of O ad on Pt and the high activation energy of O 2(g) adsorption.
doi_str_mv 10.1149/11204.0101ecst
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_11204_0101ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1149/11204.0101ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c114t-4dba53a8e6443aa4f67152a96860f77b7453d2427762e4e56f68b717a49afff63</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKdXzzkLnUmbJu1RxuaGk4lu55J2LzUjTUeSgvvv19l59PS-B9_33scPoUdKJpSy_JnSmLAJoYRC5cMVGtE8ySIuEnF90WnG41t05_2eEN5nxAh1S2O6RlsZtK3x-udYg8WfsOuqoNuzkoN40xaCrjzWFi90_Y030BzAydA5wB-tOTbg8MxAFVy_BMDv0JROWsDzDgyegjEeb_35yWz5dY9ulDQeHi5zjLbz2Wa6iFbr1-X0ZRVVfbsQsV0p00RmwBlLpGSKC5rGMucZJ0qIUrA02cUsFoLHwCDlimeloEKyXCqleDJGk-Fu5VrvHaji4HQj3bGgpDhDK36hFX_Q-sDTENDtodi3nbN9vf_MJ-iebrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Illuminating Oxygen Reduction Reaction Kinetics in High Temperature Polymer Electrolyte Membrane Fuel Cells Using EIS</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Giotakos, Panagiotis I. ; Neophytides, Stylianos G.</creator><creatorcontrib>Giotakos, Panagiotis I. ; Neophytides, Stylianos G.</creatorcontrib><description>High Temperature Polymer Electrolyte Membrane Fuel Cells (HTPEMFCs) commercialization, is impeded by the sluggish, power intensive and elusive cathodic Oxygen Reduction Reaction (ORR) kinetics. In this work we provide solid experimental evidence that the simple three elementary step Dissociative Adsorption (DA) pathway, with two intermediate species (O ad and OH ad ), can accurately describe the steady state (IV) and the Electrochemical Impedance Spectra (EIS) response of a HTPEMFC. Deconvoluted EIS outlined the important role of Intrinsic Kinetic Inertia , which dominated both EIS and polarization resistance. The Degree of Rate Control (DRC) analysis, identified the O 2(g) dissociative adsorption as the rate limiting step. Finally, Transition State Theory (TST) allowed the extraction and analysis of ORR energetics, demonstrating that the high ORR overpotential losses originate from the combined strength of both kinetically and thermodynamically imposed barriers, due to the high bonding strength of O ad on Pt and the high activation energy of O 2(g) adsorption.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/11204.0101ecst</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>ECS transactions, 2023-09, Vol.112 (4), p.101-114</ispartof><rights>2023 ECS - The Electrochemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0821-3062 ; 0000-0003-1048-5358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/11204.0101ecst/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids></links><search><creatorcontrib>Giotakos, Panagiotis I.</creatorcontrib><creatorcontrib>Neophytides, Stylianos G.</creatorcontrib><title>Illuminating Oxygen Reduction Reaction Kinetics in High Temperature Polymer Electrolyte Membrane Fuel Cells Using EIS</title><title>ECS transactions</title><addtitle>ECS Trans</addtitle><description>High Temperature Polymer Electrolyte Membrane Fuel Cells (HTPEMFCs) commercialization, is impeded by the sluggish, power intensive and elusive cathodic Oxygen Reduction Reaction (ORR) kinetics. In this work we provide solid experimental evidence that the simple three elementary step Dissociative Adsorption (DA) pathway, with two intermediate species (O ad and OH ad ), can accurately describe the steady state (IV) and the Electrochemical Impedance Spectra (EIS) response of a HTPEMFC. Deconvoluted EIS outlined the important role of Intrinsic Kinetic Inertia , which dominated both EIS and polarization resistance. The Degree of Rate Control (DRC) analysis, identified the O 2(g) dissociative adsorption as the rate limiting step. Finally, Transition State Theory (TST) allowed the extraction and analysis of ORR energetics, demonstrating that the high ORR overpotential losses originate from the combined strength of both kinetically and thermodynamically imposed barriers, due to the high bonding strength of O ad on Pt and the high activation energy of O 2(g) adsorption.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKdXzzkLnUmbJu1RxuaGk4lu55J2LzUjTUeSgvvv19l59PS-B9_33scPoUdKJpSy_JnSmLAJoYRC5cMVGtE8ySIuEnF90WnG41t05_2eEN5nxAh1S2O6RlsZtK3x-udYg8WfsOuqoNuzkoN40xaCrjzWFi90_Y030BzAydA5wB-tOTbg8MxAFVy_BMDv0JROWsDzDgyegjEeb_35yWz5dY9ulDQeHi5zjLbz2Wa6iFbr1-X0ZRVVfbsQsV0p00RmwBlLpGSKC5rGMucZJ0qIUrA02cUsFoLHwCDlimeloEKyXCqleDJGk-Fu5VrvHaji4HQj3bGgpDhDK36hFX_Q-sDTENDtodi3nbN9vf_MJ-iebrA</recordid><startdate>20230929</startdate><enddate>20230929</enddate><creator>Giotakos, Panagiotis I.</creator><creator>Neophytides, Stylianos G.</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0821-3062</orcidid><orcidid>https://orcid.org/0000-0003-1048-5358</orcidid></search><sort><creationdate>20230929</creationdate><title>Illuminating Oxygen Reduction Reaction Kinetics in High Temperature Polymer Electrolyte Membrane Fuel Cells Using EIS</title><author>Giotakos, Panagiotis I. ; Neophytides, Stylianos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c114t-4dba53a8e6443aa4f67152a96860f77b7453d2427762e4e56f68b717a49afff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Giotakos, Panagiotis I.</creatorcontrib><creatorcontrib>Neophytides, Stylianos G.</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giotakos, Panagiotis I.</au><au>Neophytides, Stylianos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illuminating Oxygen Reduction Reaction Kinetics in High Temperature Polymer Electrolyte Membrane Fuel Cells Using EIS</atitle><jtitle>ECS transactions</jtitle><addtitle>ECS Trans</addtitle><date>2023-09-29</date><risdate>2023</risdate><volume>112</volume><issue>4</issue><spage>101</spage><epage>114</epage><pages>101-114</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>High Temperature Polymer Electrolyte Membrane Fuel Cells (HTPEMFCs) commercialization, is impeded by the sluggish, power intensive and elusive cathodic Oxygen Reduction Reaction (ORR) kinetics. In this work we provide solid experimental evidence that the simple three elementary step Dissociative Adsorption (DA) pathway, with two intermediate species (O ad and OH ad ), can accurately describe the steady state (IV) and the Electrochemical Impedance Spectra (EIS) response of a HTPEMFC. Deconvoluted EIS outlined the important role of Intrinsic Kinetic Inertia , which dominated both EIS and polarization resistance. The Degree of Rate Control (DRC) analysis, identified the O 2(g) dissociative adsorption as the rate limiting step. Finally, Transition State Theory (TST) allowed the extraction and analysis of ORR energetics, demonstrating that the high ORR overpotential losses originate from the combined strength of both kinetically and thermodynamically imposed barriers, due to the high bonding strength of O ad on Pt and the high activation energy of O 2(g) adsorption.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/11204.0101ecst</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0821-3062</orcidid><orcidid>https://orcid.org/0000-0003-1048-5358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2023-09, Vol.112 (4), p.101-114
issn 1938-5862
1938-6737
language eng
recordid cdi_iop_journals_10_1149_11204_0101ecst
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Illuminating Oxygen Reduction Reaction Kinetics in High Temperature Polymer Electrolyte Membrane Fuel Cells Using EIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illuminating%20Oxygen%20Reduction%20Reaction%20Kinetics%20in%20High%20Temperature%20Polymer%20Electrolyte%20Membrane%20Fuel%20Cells%20Using%20EIS&rft.jtitle=ECS%20transactions&rft.au=Giotakos,%20Panagiotis%20I.&rft.date=2023-09-29&rft.volume=112&rft.issue=4&rft.spage=101&rft.epage=114&rft.pages=101-114&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/11204.0101ecst&rft_dat=%3Ciop_cross%3E10.1149/11204.0101ecst%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true