Comparing the Dementia Patient Monitoring Using Modern Algorithm Through Novel Deep Learning Technique and Transfer Learning

The main aim of this study is to monitor and detect the dementia patients using modern algorithms, deep learning technology, and comparing the accuracy rate between the deep learning algorithm and transfer learning. Materials and methods: Samples were collected, deep learning algorithm (N=20), trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2022-04, Vol.107 (1), p.14247-14259
Hauptverfasser: Prasanna, N.P., Jenila Rani, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14259
container_issue 1
container_start_page 14247
container_title ECS transactions
container_volume 107
creator Prasanna, N.P.
Jenila Rani, D.
description The main aim of this study is to monitor and detect the dementia patients using modern algorithms, deep learning technology, and comparing the accuracy rate between the deep learning algorithm and transfer learning. Materials and methods: Samples were collected, deep learning algorithm (N=20), transfer learning (N=20) in accordance to total sample size calculated using clinical.com. The accuracy rate of dementia patients was evaluated by using the novel Deep Learning Algorithm (DPLA) with the standard dataset. Results: Comparison of accuracy rate was done by independent sample T-test using SPSS software. There is a statistically insignificant difference (p>0.05). DPLA(80%) showed better results in comparison with transfer learning (40%). Conclusion: Novel deep learning algorithms appear to give better results than transfer learning to monitor and detect dementia patients.
doi_str_mv 10.1149/10701.14247ecst
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_10701_14247ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1149/10701.14247ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-b764956231bc80c6aa44b65e733dadfd36632a76dec590c0640cec954fa4a6ab3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqUws3pEQmnt2LGbsSqfUgsM6Ww5zqVJ1drBTpGQ-ONJ2qoTYrk73fu90-khdEvJiFKejimRhI4oj7kEE9ozNKApm0RCMnl-nJOJiC_RVQhrQkRnkgP0M3PbRvvarnBbAX6ALdi21vhDt3U34YWzdev2-jL0deEK8BZPN6tu21ZbnFXe7VYVfnNfsOkOQIPnoL3t4QxMZevPHWBtC5x5bUMJ_qRfo4tSbwLcHPsQLZ8es9lLNH9_fp1N55GhMm2jXAqeJiJmNDcTYoTWnOciAclYoYuyYEKwWEtRgElSYojgxIBJE15qroXO2RCND3eNdyF4KFXj663234oS1Yen9uGpU3id4_7gqF2j1m7nbfffP_TdH3Qv9ag6oqopSvYLgvSAnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparing the Dementia Patient Monitoring Using Modern Algorithm Through Novel Deep Learning Technique and Transfer Learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Prasanna, N.P. ; Jenila Rani, D.</creator><creatorcontrib>Prasanna, N.P. ; Jenila Rani, D.</creatorcontrib><description>The main aim of this study is to monitor and detect the dementia patients using modern algorithms, deep learning technology, and comparing the accuracy rate between the deep learning algorithm and transfer learning. Materials and methods: Samples were collected, deep learning algorithm (N=20), transfer learning (N=20) in accordance to total sample size calculated using clinical.com. The accuracy rate of dementia patients was evaluated by using the novel Deep Learning Algorithm (DPLA) with the standard dataset. Results: Comparison of accuracy rate was done by independent sample T-test using SPSS software. There is a statistically insignificant difference (p&gt;0.05). DPLA(80%) showed better results in comparison with transfer learning (40%). Conclusion: Novel deep learning algorithms appear to give better results than transfer learning to monitor and detect dementia patients.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/10701.14247ecst</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>ECS transactions, 2022-04, Vol.107 (1), p.14247-14259</ispartof><rights>2022 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/10701.14247ecst/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Prasanna, N.P.</creatorcontrib><creatorcontrib>Jenila Rani, D.</creatorcontrib><title>Comparing the Dementia Patient Monitoring Using Modern Algorithm Through Novel Deep Learning Technique and Transfer Learning</title><title>ECS transactions</title><addtitle>ECS Trans</addtitle><description>The main aim of this study is to monitor and detect the dementia patients using modern algorithms, deep learning technology, and comparing the accuracy rate between the deep learning algorithm and transfer learning. Materials and methods: Samples were collected, deep learning algorithm (N=20), transfer learning (N=20) in accordance to total sample size calculated using clinical.com. The accuracy rate of dementia patients was evaluated by using the novel Deep Learning Algorithm (DPLA) with the standard dataset. Results: Comparison of accuracy rate was done by independent sample T-test using SPSS software. There is a statistically insignificant difference (p&gt;0.05). DPLA(80%) showed better results in comparison with transfer learning (40%). Conclusion: Novel deep learning algorithms appear to give better results than transfer learning to monitor and detect dementia patients.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqUws3pEQmnt2LGbsSqfUgsM6Ww5zqVJ1drBTpGQ-ONJ2qoTYrk73fu90-khdEvJiFKejimRhI4oj7kEE9ozNKApm0RCMnl-nJOJiC_RVQhrQkRnkgP0M3PbRvvarnBbAX6ALdi21vhDt3U34YWzdev2-jL0deEK8BZPN6tu21ZbnFXe7VYVfnNfsOkOQIPnoL3t4QxMZevPHWBtC5x5bUMJ_qRfo4tSbwLcHPsQLZ8es9lLNH9_fp1N55GhMm2jXAqeJiJmNDcTYoTWnOciAclYoYuyYEKwWEtRgElSYojgxIBJE15qroXO2RCND3eNdyF4KFXj663234oS1Yen9uGpU3id4_7gqF2j1m7nbfffP_TdH3Qv9ag6oqopSvYLgvSAnw</recordid><startdate>20220424</startdate><enddate>20220424</enddate><creator>Prasanna, N.P.</creator><creator>Jenila Rani, D.</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220424</creationdate><title>Comparing the Dementia Patient Monitoring Using Modern Algorithm Through Novel Deep Learning Technique and Transfer Learning</title><author>Prasanna, N.P. ; Jenila Rani, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-b764956231bc80c6aa44b65e733dadfd36632a76dec590c0640cec954fa4a6ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Prasanna, N.P.</creatorcontrib><creatorcontrib>Jenila Rani, D.</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasanna, N.P.</au><au>Jenila Rani, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the Dementia Patient Monitoring Using Modern Algorithm Through Novel Deep Learning Technique and Transfer Learning</atitle><jtitle>ECS transactions</jtitle><addtitle>ECS Trans</addtitle><date>2022-04-24</date><risdate>2022</risdate><volume>107</volume><issue>1</issue><spage>14247</spage><epage>14259</epage><pages>14247-14259</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>The main aim of this study is to monitor and detect the dementia patients using modern algorithms, deep learning technology, and comparing the accuracy rate between the deep learning algorithm and transfer learning. Materials and methods: Samples were collected, deep learning algorithm (N=20), transfer learning (N=20) in accordance to total sample size calculated using clinical.com. The accuracy rate of dementia patients was evaluated by using the novel Deep Learning Algorithm (DPLA) with the standard dataset. Results: Comparison of accuracy rate was done by independent sample T-test using SPSS software. There is a statistically insignificant difference (p&gt;0.05). DPLA(80%) showed better results in comparison with transfer learning (40%). Conclusion: Novel deep learning algorithms appear to give better results than transfer learning to monitor and detect dementia patients.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/10701.14247ecst</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2022-04, Vol.107 (1), p.14247-14259
issn 1938-5862
1938-6737
language eng
recordid cdi_iop_journals_10_1149_10701_14247ecst
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Comparing the Dementia Patient Monitoring Using Modern Algorithm Through Novel Deep Learning Technique and Transfer Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20Dementia%20Patient%20Monitoring%20Using%20Modern%20Algorithm%20Through%20Novel%20Deep%20Learning%20Technique%20and%20Transfer%20Learning&rft.jtitle=ECS%20transactions&rft.au=Prasanna,%20N.P.&rft.date=2022-04-24&rft.volume=107&rft.issue=1&rft.spage=14247&rft.epage=14259&rft.pages=14247-14259&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/10701.14247ecst&rft_dat=%3Ciop_cross%3E10.1149/10701.14247ecst%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true