Modeling of a Bayonet Reactor for Sulfuric Acid Decomposition in Thermo-Electrochemical Sulfur Based Hydrogen Production Processes

The Hybrid Sulfur process is one of the most advanced thermo-electrochemical cycles to produce hydrogen by water splitting. It is comprised of only two global reaction steps: a low temperature electrochemical exothermic section and a high temperature endothermic thermal section operating at temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2017-01, Vol.75 (43), p.7-15
Hauptverfasser: Corgnale, Claudio, Shimpalee, Sirivatch, Gorensek, Maximilian, Weidner, John W., Summers, William
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 43
container_start_page 7
container_title ECS transactions
container_volume 75
creator Corgnale, Claudio
Shimpalee, Sirivatch
Gorensek, Maximilian
Weidner, John W.
Summers, William
description The Hybrid Sulfur process is one of the most advanced thermo-electrochemical cycles to produce hydrogen by water splitting. It is comprised of only two global reaction steps: a low temperature electrochemical exothermic section and a high temperature endothermic thermal section operating at temperatures on the order of 800 °C. The latter section realizes the decomposition of sulfuric acid into sulfur dioxide. The paper shows and discusses the simulation results obtained for a bayonet based high temperature reactor that decomposes the sulfur trioxide into sulfur dioxide. A detailed transport phenomena model has been set up using a finite volume discretization approach. It includes mass, energy and momentum balance equations, with suitable kinetics expressions that simulate the catalyst performance. A preliminary configuration of the reactor has been examined and simulated, with results demonstrating the effective performance of the component. A sulfur dioxide production yield of about 28 wt% (with corresponding sulfur trioxide reduction from 69 wt% down to about 33 wt%) has been achieved at temperatures on the order of 790 °C and operating pressures of 14 bar.
doi_str_mv 10.1149/07543.0007ecst
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1149_07543_0007ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1149/07543.0007ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d00fc1bde3ef75d51b50862252bdbb3ed7e10df1ff59ca2c5bd32d1f1e14be3e3</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujiYhePfdssthuKYUjIooJRqN43nSnUyjZ3ZJ298DVX24FPHqYzDvM9zLvEXLL2YDz4eSeKTkUA8aYQojtGenxiRhnIyXU-UnL8Si_JFcxbhkbJUb1yPerN1i5Zk29pZo-6L1vsKUfqKH1gdo0n11lu-CATsEZ-ojg652PrnW-oa6hqw2G2mfzCqENHjZYO9DViUqGEQ1d7E3wa2zoe_CmgwOaJGCMGK_JhdVVxJvT7pOvp_lqtsiWb88vs-kyA8F5mxnGLPDSoECrpJG8lCzlyWVemrIUaBRyZiy3Vk5A5yBLI3LDLUc-LBMk-mRw9IXgYwxoi11wtQ77grPit8Hi0GDx12AC7o6A87ti67vQpPf-O_4BjbV10w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of a Bayonet Reactor for Sulfuric Acid Decomposition in Thermo-Electrochemical Sulfur Based Hydrogen Production Processes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Corgnale, Claudio ; Shimpalee, Sirivatch ; Gorensek, Maximilian ; Weidner, John W. ; Summers, William</creator><creatorcontrib>Corgnale, Claudio ; Shimpalee, Sirivatch ; Gorensek, Maximilian ; Weidner, John W. ; Summers, William</creatorcontrib><description>The Hybrid Sulfur process is one of the most advanced thermo-electrochemical cycles to produce hydrogen by water splitting. It is comprised of only two global reaction steps: a low temperature electrochemical exothermic section and a high temperature endothermic thermal section operating at temperatures on the order of 800 °C. The latter section realizes the decomposition of sulfuric acid into sulfur dioxide. The paper shows and discusses the simulation results obtained for a bayonet based high temperature reactor that decomposes the sulfur trioxide into sulfur dioxide. A detailed transport phenomena model has been set up using a finite volume discretization approach. It includes mass, energy and momentum balance equations, with suitable kinetics expressions that simulate the catalyst performance. A preliminary configuration of the reactor has been examined and simulated, with results demonstrating the effective performance of the component. A sulfur dioxide production yield of about 28 wt% (with corresponding sulfur trioxide reduction from 69 wt% down to about 33 wt%) has been achieved at temperatures on the order of 790 °C and operating pressures of 14 bar.</description><identifier>ISSN: 1938-5862</identifier><identifier>ISSN: 1938-6737</identifier><identifier>EISSN: 1938-6737</identifier><identifier>EISSN: 1938-5862</identifier><identifier>DOI: 10.1149/07543.0007ecst</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>ECS transactions, 2017-01, Vol.75 (43), p.7-15</ispartof><rights>2017 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d00fc1bde3ef75d51b50862252bdbb3ed7e10df1ff59ca2c5bd32d1f1e14be3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/07543.0007ecst/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids></links><search><creatorcontrib>Corgnale, Claudio</creatorcontrib><creatorcontrib>Shimpalee, Sirivatch</creatorcontrib><creatorcontrib>Gorensek, Maximilian</creatorcontrib><creatorcontrib>Weidner, John W.</creatorcontrib><creatorcontrib>Summers, William</creatorcontrib><title>Modeling of a Bayonet Reactor for Sulfuric Acid Decomposition in Thermo-Electrochemical Sulfur Based Hydrogen Production Processes</title><title>ECS transactions</title><addtitle>ECS Trans</addtitle><description>The Hybrid Sulfur process is one of the most advanced thermo-electrochemical cycles to produce hydrogen by water splitting. It is comprised of only two global reaction steps: a low temperature electrochemical exothermic section and a high temperature endothermic thermal section operating at temperatures on the order of 800 °C. The latter section realizes the decomposition of sulfuric acid into sulfur dioxide. The paper shows and discusses the simulation results obtained for a bayonet based high temperature reactor that decomposes the sulfur trioxide into sulfur dioxide. A detailed transport phenomena model has been set up using a finite volume discretization approach. It includes mass, energy and momentum balance equations, with suitable kinetics expressions that simulate the catalyst performance. A preliminary configuration of the reactor has been examined and simulated, with results demonstrating the effective performance of the component. A sulfur dioxide production yield of about 28 wt% (with corresponding sulfur trioxide reduction from 69 wt% down to about 33 wt%) has been achieved at temperatures on the order of 790 °C and operating pressures of 14 bar.</description><issn>1938-5862</issn><issn>1938-6737</issn><issn>1938-6737</issn><issn>1938-5862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujiYhePfdssthuKYUjIooJRqN43nSnUyjZ3ZJ298DVX24FPHqYzDvM9zLvEXLL2YDz4eSeKTkUA8aYQojtGenxiRhnIyXU-UnL8Si_JFcxbhkbJUb1yPerN1i5Zk29pZo-6L1vsKUfqKH1gdo0n11lu-CATsEZ-ojg652PrnW-oa6hqw2G2mfzCqENHjZYO9DViUqGEQ1d7E3wa2zoe_CmgwOaJGCMGK_JhdVVxJvT7pOvp_lqtsiWb88vs-kyA8F5mxnGLPDSoECrpJG8lCzlyWVemrIUaBRyZiy3Vk5A5yBLI3LDLUc-LBMk-mRw9IXgYwxoi11wtQ77grPit8Hi0GDx12AC7o6A87ti67vQpPf-O_4BjbV10w</recordid><startdate>20170105</startdate><enddate>20170105</enddate><creator>Corgnale, Claudio</creator><creator>Shimpalee, Sirivatch</creator><creator>Gorensek, Maximilian</creator><creator>Weidner, John W.</creator><creator>Summers, William</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170105</creationdate><title>Modeling of a Bayonet Reactor for Sulfuric Acid Decomposition in Thermo-Electrochemical Sulfur Based Hydrogen Production Processes</title><author>Corgnale, Claudio ; Shimpalee, Sirivatch ; Gorensek, Maximilian ; Weidner, John W. ; Summers, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d00fc1bde3ef75d51b50862252bdbb3ed7e10df1ff59ca2c5bd32d1f1e14be3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Corgnale, Claudio</creatorcontrib><creatorcontrib>Shimpalee, Sirivatch</creatorcontrib><creatorcontrib>Gorensek, Maximilian</creatorcontrib><creatorcontrib>Weidner, John W.</creatorcontrib><creatorcontrib>Summers, William</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corgnale, Claudio</au><au>Shimpalee, Sirivatch</au><au>Gorensek, Maximilian</au><au>Weidner, John W.</au><au>Summers, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a Bayonet Reactor for Sulfuric Acid Decomposition in Thermo-Electrochemical Sulfur Based Hydrogen Production Processes</atitle><jtitle>ECS transactions</jtitle><addtitle>ECS Trans</addtitle><date>2017-01-05</date><risdate>2017</risdate><volume>75</volume><issue>43</issue><spage>7</spage><epage>15</epage><pages>7-15</pages><issn>1938-5862</issn><issn>1938-6737</issn><eissn>1938-6737</eissn><eissn>1938-5862</eissn><abstract>The Hybrid Sulfur process is one of the most advanced thermo-electrochemical cycles to produce hydrogen by water splitting. It is comprised of only two global reaction steps: a low temperature electrochemical exothermic section and a high temperature endothermic thermal section operating at temperatures on the order of 800 °C. The latter section realizes the decomposition of sulfuric acid into sulfur dioxide. The paper shows and discusses the simulation results obtained for a bayonet based high temperature reactor that decomposes the sulfur trioxide into sulfur dioxide. A detailed transport phenomena model has been set up using a finite volume discretization approach. It includes mass, energy and momentum balance equations, with suitable kinetics expressions that simulate the catalyst performance. A preliminary configuration of the reactor has been examined and simulated, with results demonstrating the effective performance of the component. A sulfur dioxide production yield of about 28 wt% (with corresponding sulfur trioxide reduction from 69 wt% down to about 33 wt%) has been achieved at temperatures on the order of 790 °C and operating pressures of 14 bar.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/07543.0007ecst</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2017-01, Vol.75 (43), p.7-15
issn 1938-5862
1938-6737
1938-6737
1938-5862
language eng
recordid cdi_iop_journals_10_1149_07543_0007ecst
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Modeling of a Bayonet Reactor for Sulfuric Acid Decomposition in Thermo-Electrochemical Sulfur Based Hydrogen Production Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20Bayonet%20Reactor%20for%20Sulfuric%20Acid%20Decomposition%20in%20Thermo-Electrochemical%20Sulfur%20Based%20Hydrogen%20Production%20Processes&rft.jtitle=ECS%20transactions&rft.au=Corgnale,%20Claudio&rft.date=2017-01-05&rft.volume=75&rft.issue=43&rft.spage=7&rft.epage=15&rft.pages=7-15&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/07543.0007ecst&rft_dat=%3Ciop_cross%3E10.1149/07543.0007ecst%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true