Efficient nanozyme engineering for antibacterial therapy
Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial perf...
Gespeichert in:
Veröffentlicht in: | Materials futures 2022-06, Vol.1 (2), p.23502 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 23502 |
container_title | Materials futures |
container_volume | 1 |
creator | Feng, Yonghai Chen, Funing Rosenholm, Jessica M Liu, Lei Zhang, Hongbo |
description | Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential. |
doi_str_mv | 10.1088/2752-5724/ac7068 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2752_5724_ac7068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mfac7068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</originalsourceid><addsrcrecordid>eNp1j71PwzAUxC0EElXpzpiFjVB_xHn2iKryIVVigdlynOfiqnEiJwzhrydREWKA6Z1Od6f3I-Sa0TtGlVpzkDyXwIu1dUBLdUYWP9b5L31JVn1_oJRygEICLIjaeh9cwDhk0cb2c2www7gPETGFuM98mzIbh1BZN0yOPWbDOybbjVfkwttjj6vvuyRvD9vXzVO-e3l83tzvcickH3JnvS2ctkoDCIVMI9CKYamF5qqCkoEvhETGS1dpUJ7aCmXtCpC1FlNcLAk97brU9n1Cb7oUGptGw6iZ4c1MZ2Y6c4KfKjenSmg7c2g_UpweNI03zHBDuZCUm672U-72j9y_s18plWcB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient nanozyme engineering for antibacterial therapy</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Feng, Yonghai ; Chen, Funing ; Rosenholm, Jessica M ; Liu, Lei ; Zhang, Hongbo</creator><creatorcontrib>Feng, Yonghai ; Chen, Funing ; Rosenholm, Jessica M ; Liu, Lei ; Zhang, Hongbo</creatorcontrib><description>Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.</description><identifier>ISSN: 2752-5724</identifier><identifier>EISSN: 2752-5724</identifier><identifier>DOI: 10.1088/2752-5724/ac7068</identifier><identifier>CODEN: MFAUAP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>antimicrobial resistance ; chemical design strategy ; enhanced antibacterial activity ; nanozymes</subject><ispartof>Materials futures, 2022-06, Vol.1 (2), p.23502</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</citedby><cites>FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</cites><orcidid>0000-0002-1071-4416 ; 0000-0001-6085-1112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2752-5724/ac7068/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Feng, Yonghai</creatorcontrib><creatorcontrib>Chen, Funing</creatorcontrib><creatorcontrib>Rosenholm, Jessica M</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><title>Efficient nanozyme engineering for antibacterial therapy</title><title>Materials futures</title><addtitle>mf</addtitle><addtitle>Mater. Futures</addtitle><description>Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.</description><subject>antimicrobial resistance</subject><subject>chemical design strategy</subject><subject>enhanced antibacterial activity</subject><subject>nanozymes</subject><issn>2752-5724</issn><issn>2752-5724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j71PwzAUxC0EElXpzpiFjVB_xHn2iKryIVVigdlynOfiqnEiJwzhrydREWKA6Z1Od6f3I-Sa0TtGlVpzkDyXwIu1dUBLdUYWP9b5L31JVn1_oJRygEICLIjaeh9cwDhk0cb2c2www7gPETGFuM98mzIbh1BZN0yOPWbDOybbjVfkwttjj6vvuyRvD9vXzVO-e3l83tzvcickH3JnvS2ctkoDCIVMI9CKYamF5qqCkoEvhETGS1dpUJ7aCmXtCpC1FlNcLAk97brU9n1Cb7oUGptGw6iZ4c1MZ2Y6c4KfKjenSmg7c2g_UpweNI03zHBDuZCUm672U-72j9y_s18plWcB</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Feng, Yonghai</creator><creator>Chen, Funing</creator><creator>Rosenholm, Jessica M</creator><creator>Liu, Lei</creator><creator>Zhang, Hongbo</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1071-4416</orcidid><orcidid>https://orcid.org/0000-0001-6085-1112</orcidid></search><sort><creationdate>20220601</creationdate><title>Efficient nanozyme engineering for antibacterial therapy</title><author>Feng, Yonghai ; Chen, Funing ; Rosenholm, Jessica M ; Liu, Lei ; Zhang, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>antimicrobial resistance</topic><topic>chemical design strategy</topic><topic>enhanced antibacterial activity</topic><topic>nanozymes</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yonghai</creatorcontrib><creatorcontrib>Chen, Funing</creatorcontrib><creatorcontrib>Rosenholm, Jessica M</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Materials futures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yonghai</au><au>Chen, Funing</au><au>Rosenholm, Jessica M</au><au>Liu, Lei</au><au>Zhang, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient nanozyme engineering for antibacterial therapy</atitle><jtitle>Materials futures</jtitle><stitle>mf</stitle><addtitle>Mater. Futures</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>1</volume><issue>2</issue><spage>23502</spage><pages>23502-</pages><issn>2752-5724</issn><eissn>2752-5724</eissn><coden>MFAUAP</coden><abstract>Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.</abstract><pub>IOP Publishing</pub><doi>10.1088/2752-5724/ac7068</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-1071-4416</orcidid><orcidid>https://orcid.org/0000-0001-6085-1112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2752-5724 |
ispartof | Materials futures, 2022-06, Vol.1 (2), p.23502 |
issn | 2752-5724 2752-5724 |
language | eng |
recordid | cdi_iop_journals_10_1088_2752_5724_ac7068 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | antimicrobial resistance chemical design strategy enhanced antibacterial activity nanozymes |
title | Efficient nanozyme engineering for antibacterial therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20nanozyme%20engineering%20for%20antibacterial%20therapy&rft.jtitle=Materials%20futures&rft.au=Feng,%20Yonghai&rft.date=2022-06-01&rft.volume=1&rft.issue=2&rft.spage=23502&rft.pages=23502-&rft.issn=2752-5724&rft.eissn=2752-5724&rft.coden=MFAUAP&rft_id=info:doi/10.1088/2752-5724/ac7068&rft_dat=%3Ciop_cross%3Emfac7068%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |