Efficient nanozyme engineering for antibacterial therapy

Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials futures 2022-06, Vol.1 (2), p.23502
Hauptverfasser: Feng, Yonghai, Chen, Funing, Rosenholm, Jessica M, Liu, Lei, Zhang, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 23502
container_title Materials futures
container_volume 1
creator Feng, Yonghai
Chen, Funing
Rosenholm, Jessica M
Liu, Lei
Zhang, Hongbo
description Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.
doi_str_mv 10.1088/2752-5724/ac7068
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2752_5724_ac7068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mfac7068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</originalsourceid><addsrcrecordid>eNp1j71PwzAUxC0EElXpzpiFjVB_xHn2iKryIVVigdlynOfiqnEiJwzhrydREWKA6Z1Od6f3I-Sa0TtGlVpzkDyXwIu1dUBLdUYWP9b5L31JVn1_oJRygEICLIjaeh9cwDhk0cb2c2www7gPETGFuM98mzIbh1BZN0yOPWbDOybbjVfkwttjj6vvuyRvD9vXzVO-e3l83tzvcickH3JnvS2ctkoDCIVMI9CKYamF5qqCkoEvhETGS1dpUJ7aCmXtCpC1FlNcLAk97brU9n1Cb7oUGptGw6iZ4c1MZ2Y6c4KfKjenSmg7c2g_UpweNI03zHBDuZCUm672U-72j9y_s18plWcB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient nanozyme engineering for antibacterial therapy</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Feng, Yonghai ; Chen, Funing ; Rosenholm, Jessica M ; Liu, Lei ; Zhang, Hongbo</creator><creatorcontrib>Feng, Yonghai ; Chen, Funing ; Rosenholm, Jessica M ; Liu, Lei ; Zhang, Hongbo</creatorcontrib><description>Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.</description><identifier>ISSN: 2752-5724</identifier><identifier>EISSN: 2752-5724</identifier><identifier>DOI: 10.1088/2752-5724/ac7068</identifier><identifier>CODEN: MFAUAP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>antimicrobial resistance ; chemical design strategy ; enhanced antibacterial activity ; nanozymes</subject><ispartof>Materials futures, 2022-06, Vol.1 (2), p.23502</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</citedby><cites>FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</cites><orcidid>0000-0002-1071-4416 ; 0000-0001-6085-1112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2752-5724/ac7068/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Feng, Yonghai</creatorcontrib><creatorcontrib>Chen, Funing</creatorcontrib><creatorcontrib>Rosenholm, Jessica M</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><title>Efficient nanozyme engineering for antibacterial therapy</title><title>Materials futures</title><addtitle>mf</addtitle><addtitle>Mater. Futures</addtitle><description>Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.</description><subject>antimicrobial resistance</subject><subject>chemical design strategy</subject><subject>enhanced antibacterial activity</subject><subject>nanozymes</subject><issn>2752-5724</issn><issn>2752-5724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j71PwzAUxC0EElXpzpiFjVB_xHn2iKryIVVigdlynOfiqnEiJwzhrydREWKA6Z1Od6f3I-Sa0TtGlVpzkDyXwIu1dUBLdUYWP9b5L31JVn1_oJRygEICLIjaeh9cwDhk0cb2c2www7gPETGFuM98mzIbh1BZN0yOPWbDOybbjVfkwttjj6vvuyRvD9vXzVO-e3l83tzvcickH3JnvS2ctkoDCIVMI9CKYamF5qqCkoEvhETGS1dpUJ7aCmXtCpC1FlNcLAk97brU9n1Cb7oUGptGw6iZ4c1MZ2Y6c4KfKjenSmg7c2g_UpweNI03zHBDuZCUm672U-72j9y_s18plWcB</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Feng, Yonghai</creator><creator>Chen, Funing</creator><creator>Rosenholm, Jessica M</creator><creator>Liu, Lei</creator><creator>Zhang, Hongbo</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1071-4416</orcidid><orcidid>https://orcid.org/0000-0001-6085-1112</orcidid></search><sort><creationdate>20220601</creationdate><title>Efficient nanozyme engineering for antibacterial therapy</title><author>Feng, Yonghai ; Chen, Funing ; Rosenholm, Jessica M ; Liu, Lei ; Zhang, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-cafa4c9a897738e19e70b1e693928b7617f435e126cb978f0abe5dc475d93e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>antimicrobial resistance</topic><topic>chemical design strategy</topic><topic>enhanced antibacterial activity</topic><topic>nanozymes</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yonghai</creatorcontrib><creatorcontrib>Chen, Funing</creatorcontrib><creatorcontrib>Rosenholm, Jessica M</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Materials futures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yonghai</au><au>Chen, Funing</au><au>Rosenholm, Jessica M</au><au>Liu, Lei</au><au>Zhang, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient nanozyme engineering for antibacterial therapy</atitle><jtitle>Materials futures</jtitle><stitle>mf</stitle><addtitle>Mater. Futures</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>1</volume><issue>2</issue><spage>23502</spage><pages>23502-</pages><issn>2752-5724</issn><eissn>2752-5724</eissn><coden>MFAUAP</coden><abstract>Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.</abstract><pub>IOP Publishing</pub><doi>10.1088/2752-5724/ac7068</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-1071-4416</orcidid><orcidid>https://orcid.org/0000-0001-6085-1112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2752-5724
ispartof Materials futures, 2022-06, Vol.1 (2), p.23502
issn 2752-5724
2752-5724
language eng
recordid cdi_iop_journals_10_1088_2752_5724_ac7068
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects antimicrobial resistance
chemical design strategy
enhanced antibacterial activity
nanozymes
title Efficient nanozyme engineering for antibacterial therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20nanozyme%20engineering%20for%20antibacterial%20therapy&rft.jtitle=Materials%20futures&rft.au=Feng,%20Yonghai&rft.date=2022-06-01&rft.volume=1&rft.issue=2&rft.spage=23502&rft.pages=23502-&rft.issn=2752-5724&rft.eissn=2752-5724&rft.coden=MFAUAP&rft_id=info:doi/10.1088/2752-5724/ac7068&rft_dat=%3Ciop_cross%3Emfac7068%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true