New angles on fast calorimeter shower simulation

The demands placed on computational resources by the simulation requirements of high energy physics experiments motivate the development of novel simulation tools. Machine learning based generative models offer a solution that is both fast and accurate. In this work we extend the Bounded Information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2023-09, Vol.4 (3), p.35044
Hauptverfasser: Diefenbacher, Sascha, Eren, Engin, Gaede, Frank, Kasieczka, Gregor, Korol, Anatolii, Krüger, Katja, McKeown, Peter, Rustige, Lennart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35044
container_title Machine learning: science and technology
container_volume 4
creator Diefenbacher, Sascha
Eren, Engin
Gaede, Frank
Kasieczka, Gregor
Korol, Anatolii
Krüger, Katja
McKeown, Peter
Rustige, Lennart
description The demands placed on computational resources by the simulation requirements of high energy physics experiments motivate the development of novel simulation tools. Machine learning based generative models offer a solution that is both fast and accurate. In this work we extend the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture, designed for the simulation of particle showers in highly granular calorimeters, in two key directions. First, we generalise the model to a multi-parameter conditioning scenario, while retaining a high degree of physics fidelity. In a second step, we perform a detailed study of the effect of applying a state-of-the-art particle flow-based reconstruction procedure to the generated showers. We demonstrate that the performance of the model remains high after reconstruction. These results are an important step towards creating a more general simulation tool, where maintaining physics performance after reconstruction is the ultimate target.
doi_str_mv 10.1088/2632-2153/acefa9
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2632_2153_acefa9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4cd6694d671545718317a9b070e3b528</doaj_id><sourcerecordid>2862591430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-9d29020577ca8c620922e48eb164fdc9f38a1fd855635e0f02f4d637e0aa2433</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIVKU7YyQGFkKfP2OPqOKjUgVLd8t17JIqjYOdquLfkxAEDIjpnk53906H0CWGWwxSzomgJCeY07mxzht1gibf1Omv-xzNUtoBAOGYcgITBM_umJlmW7uUhSbzJnWZNXWI1d51LmbpNRwHqPaH2nRVaC7QmTd1crMvnKL1w_168ZSvXh6Xi7tVbhmTXa5KooAALwprpBUEFCGOSbfBgvnSKk-lwb6UnAvKHXggnpWCFg6MIYzSKVqOsWUwO932dUx818FU-pMIcatN7CpbO81sKYTq3QXmjBdYUlwYtYECHN1wIvusqzGrjeHt4FKnd-EQm769JlIQrjCj0KtgVNkYUorOf3_FoIeV9TCjHmbU48q95Wa0VKH9yfxHfv2HfF_3hZimGigHxnRbevoBKpuIzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862591430</pqid></control><display><type>article</type><title>New angles on fast calorimeter shower simulation</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Diefenbacher, Sascha ; Eren, Engin ; Gaede, Frank ; Kasieczka, Gregor ; Korol, Anatolii ; Krüger, Katja ; McKeown, Peter ; Rustige, Lennart</creator><creatorcontrib>Diefenbacher, Sascha ; Eren, Engin ; Gaede, Frank ; Kasieczka, Gregor ; Korol, Anatolii ; Krüger, Katja ; McKeown, Peter ; Rustige, Lennart</creatorcontrib><description>The demands placed on computational resources by the simulation requirements of high energy physics experiments motivate the development of novel simulation tools. Machine learning based generative models offer a solution that is both fast and accurate. In this work we extend the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture, designed for the simulation of particle showers in highly granular calorimeters, in two key directions. First, we generalise the model to a multi-parameter conditioning scenario, while retaining a high degree of physics fidelity. In a second step, we perform a detailed study of the effect of applying a state-of-the-art particle flow-based reconstruction procedure to the generated showers. We demonstrate that the performance of the model remains high after reconstruction. These results are an important step towards creating a more general simulation tool, where maintaining physics performance after reconstruction is the ultimate target.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/acefa9</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>calorimeter ; deep learning ; generative models ; Machine learning ; particle physics ; Reconstruction ; Showers ; Simulation ; simulations</subject><ispartof>Machine learning: science and technology, 2023-09, Vol.4 (3), p.35044</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-9d29020577ca8c620922e48eb164fdc9f38a1fd855635e0f02f4d637e0aa2433</citedby><cites>FETCH-LOGICAL-c448t-9d29020577ca8c620922e48eb164fdc9f38a1fd855635e0f02f4d637e0aa2433</cites><orcidid>0009-0006-9722-2233 ; 0000-0002-0292-2477 ; 0000-0003-4308-6804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/acefa9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Diefenbacher, Sascha</creatorcontrib><creatorcontrib>Eren, Engin</creatorcontrib><creatorcontrib>Gaede, Frank</creatorcontrib><creatorcontrib>Kasieczka, Gregor</creatorcontrib><creatorcontrib>Korol, Anatolii</creatorcontrib><creatorcontrib>Krüger, Katja</creatorcontrib><creatorcontrib>McKeown, Peter</creatorcontrib><creatorcontrib>Rustige, Lennart</creatorcontrib><title>New angles on fast calorimeter shower simulation</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>The demands placed on computational resources by the simulation requirements of high energy physics experiments motivate the development of novel simulation tools. Machine learning based generative models offer a solution that is both fast and accurate. In this work we extend the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture, designed for the simulation of particle showers in highly granular calorimeters, in two key directions. First, we generalise the model to a multi-parameter conditioning scenario, while retaining a high degree of physics fidelity. In a second step, we perform a detailed study of the effect of applying a state-of-the-art particle flow-based reconstruction procedure to the generated showers. We demonstrate that the performance of the model remains high after reconstruction. These results are an important step towards creating a more general simulation tool, where maintaining physics performance after reconstruction is the ultimate target.</description><subject>calorimeter</subject><subject>deep learning</subject><subject>generative models</subject><subject>Machine learning</subject><subject>particle physics</subject><subject>Reconstruction</subject><subject>Showers</subject><subject>Simulation</subject><subject>simulations</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9UD1PwzAUtBBIVKU7YyQGFkKfP2OPqOKjUgVLd8t17JIqjYOdquLfkxAEDIjpnk53906H0CWGWwxSzomgJCeY07mxzht1gibf1Omv-xzNUtoBAOGYcgITBM_umJlmW7uUhSbzJnWZNXWI1d51LmbpNRwHqPaH2nRVaC7QmTd1crMvnKL1w_168ZSvXh6Xi7tVbhmTXa5KooAALwprpBUEFCGOSbfBgvnSKk-lwb6UnAvKHXggnpWCFg6MIYzSKVqOsWUwO932dUx818FU-pMIcatN7CpbO81sKYTq3QXmjBdYUlwYtYECHN1wIvusqzGrjeHt4FKnd-EQm769JlIQrjCj0KtgVNkYUorOf3_FoIeV9TCjHmbU48q95Wa0VKH9yfxHfv2HfF_3hZimGigHxnRbevoBKpuIzw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Diefenbacher, Sascha</creator><creator>Eren, Engin</creator><creator>Gaede, Frank</creator><creator>Kasieczka, Gregor</creator><creator>Korol, Anatolii</creator><creator>Krüger, Katja</creator><creator>McKeown, Peter</creator><creator>Rustige, Lennart</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-9722-2233</orcidid><orcidid>https://orcid.org/0000-0002-0292-2477</orcidid><orcidid>https://orcid.org/0000-0003-4308-6804</orcidid></search><sort><creationdate>20230901</creationdate><title>New angles on fast calorimeter shower simulation</title><author>Diefenbacher, Sascha ; Eren, Engin ; Gaede, Frank ; Kasieczka, Gregor ; Korol, Anatolii ; Krüger, Katja ; McKeown, Peter ; Rustige, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-9d29020577ca8c620922e48eb164fdc9f38a1fd855635e0f02f4d637e0aa2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>calorimeter</topic><topic>deep learning</topic><topic>generative models</topic><topic>Machine learning</topic><topic>particle physics</topic><topic>Reconstruction</topic><topic>Showers</topic><topic>Simulation</topic><topic>simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diefenbacher, Sascha</creatorcontrib><creatorcontrib>Eren, Engin</creatorcontrib><creatorcontrib>Gaede, Frank</creatorcontrib><creatorcontrib>Kasieczka, Gregor</creatorcontrib><creatorcontrib>Korol, Anatolii</creatorcontrib><creatorcontrib>Krüger, Katja</creatorcontrib><creatorcontrib>McKeown, Peter</creatorcontrib><creatorcontrib>Rustige, Lennart</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diefenbacher, Sascha</au><au>Eren, Engin</au><au>Gaede, Frank</au><au>Kasieczka, Gregor</au><au>Korol, Anatolii</au><au>Krüger, Katja</au><au>McKeown, Peter</au><au>Rustige, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New angles on fast calorimeter shower simulation</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>35044</spage><pages>35044-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>The demands placed on computational resources by the simulation requirements of high energy physics experiments motivate the development of novel simulation tools. Machine learning based generative models offer a solution that is both fast and accurate. In this work we extend the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture, designed for the simulation of particle showers in highly granular calorimeters, in two key directions. First, we generalise the model to a multi-parameter conditioning scenario, while retaining a high degree of physics fidelity. In a second step, we perform a detailed study of the effect of applying a state-of-the-art particle flow-based reconstruction procedure to the generated showers. We demonstrate that the performance of the model remains high after reconstruction. These results are an important step towards creating a more general simulation tool, where maintaining physics performance after reconstruction is the ultimate target.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/acefa9</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0006-9722-2233</orcidid><orcidid>https://orcid.org/0000-0002-0292-2477</orcidid><orcidid>https://orcid.org/0000-0003-4308-6804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2023-09, Vol.4 (3), p.35044
issn 2632-2153
2632-2153
language eng
recordid cdi_iop_journals_10_1088_2632_2153_acefa9
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects calorimeter
deep learning
generative models
Machine learning
particle physics
Reconstruction
Showers
Simulation
simulations
title New angles on fast calorimeter shower simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20angles%20on%20fast%20calorimeter%20shower%20simulation&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Diefenbacher,%20Sascha&rft.date=2023-09-01&rft.volume=4&rft.issue=3&rft.spage=35044&rft.pages=35044-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/acefa9&rft_dat=%3Cproquest_iop_j%3E2862591430%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862591430&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4cd6694d671545718317a9b070e3b528&rfr_iscdi=true