Augmentations of Forman’s Ricci curvature and their applications in community detection

The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physic, complexity complexity, 2024-09, Vol.5 (3), p.35010
Hauptverfasser: Fesser, Lukas, Serrano de Haro Iváñez, Sergio, Devriendt, Karel, Weber, Melanie, Lambiotte, Renaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35010
container_title Journal of physic, complexity
container_volume 5
creator Fesser, Lukas
Serrano de Haro Iváñez, Sergio
Devriendt, Karel
Weber, Melanie
Lambiotte, Renaud
description The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.
doi_str_mv 10.1088/2632-072X/ad64a3
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2632_072X_ad64a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a4ff47bbace1494b92cbc4d3e3da5e18</doaj_id><sourcerecordid>jpcomplexad64a3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-ee3d8cbdac20606984945fada3d0349becbb7c2e59b6c2e1355fbd37d43cdc523</originalsourceid><addsrcrecordid>eNp1kN9KwzAUh4soOObuvcwDOJc0Tf9cjuF0MBBEQa_CyUk6M9qmpK24O1_D1_NJ7OwY3uzqhB_5fTn5guCa0VtG03QWxjyc0iR8nYGOI-BnwegYnf87XwaTptlSSsMkYUywUfA27zalqVporasa4nKydL6E6ufruyFPFtES7PwHtJ03BCpN2ndjPYG6LiweSrYi6Mqyq2y7I9q0Bvf5VXCRQ9GYyWGOg5fl3fPiYbp-vF8t5uspcpq2U2O4TlFpwJDGNM7SKItEDhq4pjzKlEGlEgyNyFTcD8aFyJXmiY44ahQhHwergasdbGXtbQl-Jx1Y-Rc4v5HgW4uFkRDleZQoBWhY_4zKQlQYad6vAMKwtGfRgYXeNY03-ZHHqNyblnuVcq9SDqb7ys1Qsa6WW9f5qv-s3Na9kbown1JILikXtAfUOj9x_ST9F3T_kxE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Augmentations of Forman’s Ricci curvature and their applications in community detection</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fesser, Lukas ; Serrano de Haro Iváñez, Sergio ; Devriendt, Karel ; Weber, Melanie ; Lambiotte, Renaud</creator><creatorcontrib>Fesser, Lukas ; Serrano de Haro Iváñez, Sergio ; Devriendt, Karel ; Weber, Melanie ; Lambiotte, Renaud</creatorcontrib><description>The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.</description><identifier>ISSN: 2632-072X</identifier><identifier>EISSN: 2632-072X</identifier><identifier>DOI: 10.1088/2632-072X/ad64a3</identifier><identifier>CODEN: JPCOGQ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>community detection ; discrete curvature ; network analysis</subject><ispartof>Journal of physic, complexity, 2024-09, Vol.5 (3), p.35010</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-ee3d8cbdac20606984945fada3d0349becbb7c2e59b6c2e1355fbd37d43cdc523</cites><orcidid>0000-0002-0583-4595 ; 0009-0000-3711-0121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-072X/ad64a3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Fesser, Lukas</creatorcontrib><creatorcontrib>Serrano de Haro Iváñez, Sergio</creatorcontrib><creatorcontrib>Devriendt, Karel</creatorcontrib><creatorcontrib>Weber, Melanie</creatorcontrib><creatorcontrib>Lambiotte, Renaud</creatorcontrib><title>Augmentations of Forman’s Ricci curvature and their applications in community detection</title><title>Journal of physic, complexity</title><addtitle>JPCOMPLEX</addtitle><addtitle>J. Phys. Complex</addtitle><description>The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.</description><subject>community detection</subject><subject>discrete curvature</subject><subject>network analysis</subject><issn>2632-072X</issn><issn>2632-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kN9KwzAUh4soOObuvcwDOJc0Tf9cjuF0MBBEQa_CyUk6M9qmpK24O1_D1_NJ7OwY3uzqhB_5fTn5guCa0VtG03QWxjyc0iR8nYGOI-BnwegYnf87XwaTptlSSsMkYUywUfA27zalqVporasa4nKydL6E6ufruyFPFtES7PwHtJ03BCpN2ndjPYG6LiweSrYi6Mqyq2y7I9q0Bvf5VXCRQ9GYyWGOg5fl3fPiYbp-vF8t5uspcpq2U2O4TlFpwJDGNM7SKItEDhq4pjzKlEGlEgyNyFTcD8aFyJXmiY44ahQhHwergasdbGXtbQl-Jx1Y-Rc4v5HgW4uFkRDleZQoBWhY_4zKQlQYad6vAMKwtGfRgYXeNY03-ZHHqNyblnuVcq9SDqb7ys1Qsa6WW9f5qv-s3Na9kbown1JILikXtAfUOj9x_ST9F3T_kxE</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fesser, Lukas</creator><creator>Serrano de Haro Iváñez, Sergio</creator><creator>Devriendt, Karel</creator><creator>Weber, Melanie</creator><creator>Lambiotte, Renaud</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0583-4595</orcidid><orcidid>https://orcid.org/0009-0000-3711-0121</orcidid></search><sort><creationdate>20240901</creationdate><title>Augmentations of Forman’s Ricci curvature and their applications in community detection</title><author>Fesser, Lukas ; Serrano de Haro Iváñez, Sergio ; Devriendt, Karel ; Weber, Melanie ; Lambiotte, Renaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-ee3d8cbdac20606984945fada3d0349becbb7c2e59b6c2e1355fbd37d43cdc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>community detection</topic><topic>discrete curvature</topic><topic>network analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fesser, Lukas</creatorcontrib><creatorcontrib>Serrano de Haro Iváñez, Sergio</creatorcontrib><creatorcontrib>Devriendt, Karel</creatorcontrib><creatorcontrib>Weber, Melanie</creatorcontrib><creatorcontrib>Lambiotte, Renaud</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of physic, complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fesser, Lukas</au><au>Serrano de Haro Iváñez, Sergio</au><au>Devriendt, Karel</au><au>Weber, Melanie</au><au>Lambiotte, Renaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmentations of Forman’s Ricci curvature and their applications in community detection</atitle><jtitle>Journal of physic, complexity</jtitle><stitle>JPCOMPLEX</stitle><addtitle>J. Phys. Complex</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><spage>35010</spage><pages>35010-</pages><issn>2632-072X</issn><eissn>2632-072X</eissn><coden>JPCOGQ</coden><abstract>The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.</abstract><pub>IOP Publishing</pub><doi>10.1088/2632-072X/ad64a3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0583-4595</orcidid><orcidid>https://orcid.org/0009-0000-3711-0121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-072X
ispartof Journal of physic, complexity, 2024-09, Vol.5 (3), p.35010
issn 2632-072X
2632-072X
language eng
recordid cdi_iop_journals_10_1088_2632_072X_ad64a3
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects community detection
discrete curvature
network analysis
title Augmentations of Forman’s Ricci curvature and their applications in community detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmentations%20of%20Forman%E2%80%99s%20Ricci%20curvature%20and%20their%20applications%20in%20community%20detection&rft.jtitle=Journal%20of%20physic,%20complexity&rft.au=Fesser,%20Lukas&rft.date=2024-09-01&rft.volume=5&rft.issue=3&rft.spage=35010&rft.pages=35010-&rft.issn=2632-072X&rft.eissn=2632-072X&rft.coden=JPCOGQ&rft_id=info:doi/10.1088/2632-072X/ad64a3&rft_dat=%3Ciop_cross%3Ejpcomplexad64a3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a4ff47bbace1494b92cbc4d3e3da5e18&rfr_iscdi=true