Augmentations of Forman’s Ricci curvature and their applications in community detection
The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the d...
Gespeichert in:
Veröffentlicht in: | Journal of physic, complexity complexity, 2024-09, Vol.5 (3), p.35010 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35010 |
container_title | Journal of physic, complexity |
container_volume | 5 |
creator | Fesser, Lukas Serrano de Haro Iváñez, Sergio Devriendt, Karel Weber, Melanie Lambiotte, Renaud |
description | The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach. |
doi_str_mv | 10.1088/2632-072X/ad64a3 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2632_072X_ad64a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a4ff47bbace1494b92cbc4d3e3da5e18</doaj_id><sourcerecordid>jpcomplexad64a3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-ee3d8cbdac20606984945fada3d0349becbb7c2e59b6c2e1355fbd37d43cdc523</originalsourceid><addsrcrecordid>eNp1kN9KwzAUh4soOObuvcwDOJc0Tf9cjuF0MBBEQa_CyUk6M9qmpK24O1_D1_NJ7OwY3uzqhB_5fTn5guCa0VtG03QWxjyc0iR8nYGOI-BnwegYnf87XwaTptlSSsMkYUywUfA27zalqVporasa4nKydL6E6ufruyFPFtES7PwHtJ03BCpN2ndjPYG6LiweSrYi6Mqyq2y7I9q0Bvf5VXCRQ9GYyWGOg5fl3fPiYbp-vF8t5uspcpq2U2O4TlFpwJDGNM7SKItEDhq4pjzKlEGlEgyNyFTcD8aFyJXmiY44ahQhHwergasdbGXtbQl-Jx1Y-Rc4v5HgW4uFkRDleZQoBWhY_4zKQlQYad6vAMKwtGfRgYXeNY03-ZHHqNyblnuVcq9SDqb7ys1Qsa6WW9f5qv-s3Na9kbown1JILikXtAfUOj9x_ST9F3T_kxE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Augmentations of Forman’s Ricci curvature and their applications in community detection</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fesser, Lukas ; Serrano de Haro Iváñez, Sergio ; Devriendt, Karel ; Weber, Melanie ; Lambiotte, Renaud</creator><creatorcontrib>Fesser, Lukas ; Serrano de Haro Iváñez, Sergio ; Devriendt, Karel ; Weber, Melanie ; Lambiotte, Renaud</creatorcontrib><description>The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.</description><identifier>ISSN: 2632-072X</identifier><identifier>EISSN: 2632-072X</identifier><identifier>DOI: 10.1088/2632-072X/ad64a3</identifier><identifier>CODEN: JPCOGQ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>community detection ; discrete curvature ; network analysis</subject><ispartof>Journal of physic, complexity, 2024-09, Vol.5 (3), p.35010</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-ee3d8cbdac20606984945fada3d0349becbb7c2e59b6c2e1355fbd37d43cdc523</cites><orcidid>0000-0002-0583-4595 ; 0009-0000-3711-0121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-072X/ad64a3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Fesser, Lukas</creatorcontrib><creatorcontrib>Serrano de Haro Iváñez, Sergio</creatorcontrib><creatorcontrib>Devriendt, Karel</creatorcontrib><creatorcontrib>Weber, Melanie</creatorcontrib><creatorcontrib>Lambiotte, Renaud</creatorcontrib><title>Augmentations of Forman’s Ricci curvature and their applications in community detection</title><title>Journal of physic, complexity</title><addtitle>JPCOMPLEX</addtitle><addtitle>J. Phys. Complex</addtitle><description>The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.</description><subject>community detection</subject><subject>discrete curvature</subject><subject>network analysis</subject><issn>2632-072X</issn><issn>2632-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kN9KwzAUh4soOObuvcwDOJc0Tf9cjuF0MBBEQa_CyUk6M9qmpK24O1_D1_NJ7OwY3uzqhB_5fTn5guCa0VtG03QWxjyc0iR8nYGOI-BnwegYnf87XwaTptlSSsMkYUywUfA27zalqVporasa4nKydL6E6ufruyFPFtES7PwHtJ03BCpN2ndjPYG6LiweSrYi6Mqyq2y7I9q0Bvf5VXCRQ9GYyWGOg5fl3fPiYbp-vF8t5uspcpq2U2O4TlFpwJDGNM7SKItEDhq4pjzKlEGlEgyNyFTcD8aFyJXmiY44ahQhHwergasdbGXtbQl-Jx1Y-Rc4v5HgW4uFkRDleZQoBWhY_4zKQlQYad6vAMKwtGfRgYXeNY03-ZHHqNyblnuVcq9SDqb7ys1Qsa6WW9f5qv-s3Na9kbown1JILikXtAfUOj9x_ST9F3T_kxE</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fesser, Lukas</creator><creator>Serrano de Haro Iváñez, Sergio</creator><creator>Devriendt, Karel</creator><creator>Weber, Melanie</creator><creator>Lambiotte, Renaud</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0583-4595</orcidid><orcidid>https://orcid.org/0009-0000-3711-0121</orcidid></search><sort><creationdate>20240901</creationdate><title>Augmentations of Forman’s Ricci curvature and their applications in community detection</title><author>Fesser, Lukas ; Serrano de Haro Iváñez, Sergio ; Devriendt, Karel ; Weber, Melanie ; Lambiotte, Renaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-ee3d8cbdac20606984945fada3d0349becbb7c2e59b6c2e1355fbd37d43cdc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>community detection</topic><topic>discrete curvature</topic><topic>network analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fesser, Lukas</creatorcontrib><creatorcontrib>Serrano de Haro Iváñez, Sergio</creatorcontrib><creatorcontrib>Devriendt, Karel</creatorcontrib><creatorcontrib>Weber, Melanie</creatorcontrib><creatorcontrib>Lambiotte, Renaud</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of physic, complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fesser, Lukas</au><au>Serrano de Haro Iváñez, Sergio</au><au>Devriendt, Karel</au><au>Weber, Melanie</au><au>Lambiotte, Renaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmentations of Forman’s Ricci curvature and their applications in community detection</atitle><jtitle>Journal of physic, complexity</jtitle><stitle>JPCOMPLEX</stitle><addtitle>J. Phys. Complex</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><spage>35010</spage><pages>35010-</pages><issn>2632-072X</issn><eissn>2632-072X</eissn><coden>JPCOGQ</coden><abstract>The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.</abstract><pub>IOP Publishing</pub><doi>10.1088/2632-072X/ad64a3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0583-4595</orcidid><orcidid>https://orcid.org/0009-0000-3711-0121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-072X |
ispartof | Journal of physic, complexity, 2024-09, Vol.5 (3), p.35010 |
issn | 2632-072X 2632-072X |
language | eng |
recordid | cdi_iop_journals_10_1088_2632_072X_ad64a3 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | community detection discrete curvature network analysis |
title | Augmentations of Forman’s Ricci curvature and their applications in community detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmentations%20of%20Forman%E2%80%99s%20Ricci%20curvature%20and%20their%20applications%20in%20community%20detection&rft.jtitle=Journal%20of%20physic,%20complexity&rft.au=Fesser,%20Lukas&rft.date=2024-09-01&rft.volume=5&rft.issue=3&rft.spage=35010&rft.pages=35010-&rft.issn=2632-072X&rft.eissn=2632-072X&rft.coden=JPCOGQ&rft_id=info:doi/10.1088/2632-072X/ad64a3&rft_dat=%3Ciop_cross%3Ejpcomplexad64a3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a4ff47bbace1494b92cbc4d3e3da5e18&rfr_iscdi=true |