Realtime ransomware process detection using an advanced hybrid approach with machine learning within IoT ecosystems
Cybersecurity faces significant challenges from malicious attacks, malware, and ransomware variants, posing serious threats to computer systems, infrastructure, data centers, web and mobile applications across diverse sectors. Conventional anti-ransomware systems struggle to keep pace with evolving...
Gespeichert in:
Veröffentlicht in: | Engineering Research Express 2025-03, Vol.7 (1), p.15211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15211 |
container_title | Engineering Research Express |
container_volume | 7 |
creator | El Hariri, Ayyoub Mouiti, Mohammed Lazaar, Mohamed |
description | Cybersecurity faces significant challenges from malicious attacks, malware, and ransomware variants, posing serious threats to computer systems, infrastructure, data centers, web and mobile applications across diverse sectors. Conventional anti-ransomware systems struggle to keep pace with evolving sophisticated threats. Therefore, advanced methodologies, including both traditional and artificial intelligence based approaches, are becoming increasingly crucial in developing innovative ransomware countermeasures. This study presents a novel hybrid detection framework for ransomware, combining entropy and frequency analysis with various machine learning algorithms, including Multi-Layer Perceptron MLP, Decision Trees DT, Random Forests RF, K-Nearest Neighbor KNN, and Logistic Regression LR. We evaluate the classification performance of these models using a specialized ransomware dataset. Our approach also incorporates data augmentation techniques to enhance the detection capabilities, generating synthetic data based on the original ransomware samples. Our experiments demonstrate that the DT and RF classifiers significantly outperform other methods in terms of accuracy, F1-score, and precision. Specifically, the DT classifier achieved an accuracy of 98.89%, an F1-score of 98.81%, and a precision of 98.90%, while the RF classifier achieved an accuracy of 98.78%, an F1-score of 98.23%, and a precision of 98.99%. The integration of data augmentation further boosted the model’s performance, resulting in substantial improvements across all metrics. |
doi_str_mv | 10.1088/2631-8695/ada3b3 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2631_8695_ada3b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>erxada3b3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c109f-6f0b377745955caaea80d384a90493d9a36a9f130a942de16657c90375fd4b8f3</originalsourceid><addsrcrecordid>eNp1kM1LAzEUxIMoWLR3jzl5cm3S7CaboxQ_CgVB6jm8Td7aSDe7JFtr_3t3qYgHPb1hmBkeP0KuOLvlrCxncyl4VkpdzMCBqMQJmfxYp7_0OZmm5CuWS8ml4mpC0gvCtvcN0gghtc0eItIuthZTog57tL1vA90lH94oBAruA4JFRzeHKnpHoRvCYDd07_sNbQblA9ItQgxjY3R9oMt2TdG26ZB6bNIlOathm3D6fS_I68P9evGUrZ4fl4u7VWY503Uma1YJpVRe6KKwAAglc6LMQbNcC6dBSNA1Fwx0PnfIpSyU1UyoonZ5VdbigrDjro1tShFr00XfQDwYzszIzYxgzAjGHLkNletjxbedeW93MQwPGoyfRhluGC_mnJvOjds3fwT_3f0C6M9-gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Realtime ransomware process detection using an advanced hybrid approach with machine learning within IoT ecosystems</title><source>Institute of Physics Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>El Hariri, Ayyoub ; Mouiti, Mohammed ; Lazaar, Mohamed</creator><creatorcontrib>El Hariri, Ayyoub ; Mouiti, Mohammed ; Lazaar, Mohamed</creatorcontrib><description>Cybersecurity faces significant challenges from malicious attacks, malware, and ransomware variants, posing serious threats to computer systems, infrastructure, data centers, web and mobile applications across diverse sectors. Conventional anti-ransomware systems struggle to keep pace with evolving sophisticated threats. Therefore, advanced methodologies, including both traditional and artificial intelligence based approaches, are becoming increasingly crucial in developing innovative ransomware countermeasures. This study presents a novel hybrid detection framework for ransomware, combining entropy and frequency analysis with various machine learning algorithms, including Multi-Layer Perceptron MLP, Decision Trees DT, Random Forests RF, K-Nearest Neighbor KNN, and Logistic Regression LR. We evaluate the classification performance of these models using a specialized ransomware dataset. Our approach also incorporates data augmentation techniques to enhance the detection capabilities, generating synthetic data based on the original ransomware samples. Our experiments demonstrate that the DT and RF classifiers significantly outperform other methods in terms of accuracy, F1-score, and precision. Specifically, the DT classifier achieved an accuracy of 98.89%, an F1-score of 98.81%, and a precision of 98.90%, while the RF classifier achieved an accuracy of 98.78%, an F1-score of 98.23%, and a precision of 98.99%. The integration of data augmentation further boosted the model’s performance, resulting in substantial improvements across all metrics.</description><identifier>ISSN: 2631-8695</identifier><identifier>EISSN: 2631-8695</identifier><identifier>DOI: 10.1088/2631-8695/ada3b3</identifier><identifier>CODEN: ERENBL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>data augmentation for malware detection ; entropy and frequency analysis ; machine learning in cybersecurity ; malware detection ; ransomware detection</subject><ispartof>Engineering Research Express, 2025-03, Vol.7 (1), p.15211</ispartof><rights>2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c109f-6f0b377745955caaea80d384a90493d9a36a9f130a942de16657c90375fd4b8f3</cites><orcidid>0009-0008-8523-4653 ; 0009-0007-4244-0644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2631-8695/ada3b3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>El Hariri, Ayyoub</creatorcontrib><creatorcontrib>Mouiti, Mohammed</creatorcontrib><creatorcontrib>Lazaar, Mohamed</creatorcontrib><title>Realtime ransomware process detection using an advanced hybrid approach with machine learning within IoT ecosystems</title><title>Engineering Research Express</title><addtitle>ERX</addtitle><addtitle>Eng. Res. Express</addtitle><description>Cybersecurity faces significant challenges from malicious attacks, malware, and ransomware variants, posing serious threats to computer systems, infrastructure, data centers, web and mobile applications across diverse sectors. Conventional anti-ransomware systems struggle to keep pace with evolving sophisticated threats. Therefore, advanced methodologies, including both traditional and artificial intelligence based approaches, are becoming increasingly crucial in developing innovative ransomware countermeasures. This study presents a novel hybrid detection framework for ransomware, combining entropy and frequency analysis with various machine learning algorithms, including Multi-Layer Perceptron MLP, Decision Trees DT, Random Forests RF, K-Nearest Neighbor KNN, and Logistic Regression LR. We evaluate the classification performance of these models using a specialized ransomware dataset. Our approach also incorporates data augmentation techniques to enhance the detection capabilities, generating synthetic data based on the original ransomware samples. Our experiments demonstrate that the DT and RF classifiers significantly outperform other methods in terms of accuracy, F1-score, and precision. Specifically, the DT classifier achieved an accuracy of 98.89%, an F1-score of 98.81%, and a precision of 98.90%, while the RF classifier achieved an accuracy of 98.78%, an F1-score of 98.23%, and a precision of 98.99%. The integration of data augmentation further boosted the model’s performance, resulting in substantial improvements across all metrics.</description><subject>data augmentation for malware detection</subject><subject>entropy and frequency analysis</subject><subject>machine learning in cybersecurity</subject><subject>malware detection</subject><subject>ransomware detection</subject><issn>2631-8695</issn><issn>2631-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LAzEUxIMoWLR3jzl5cm3S7CaboxQ_CgVB6jm8Td7aSDe7JFtr_3t3qYgHPb1hmBkeP0KuOLvlrCxncyl4VkpdzMCBqMQJmfxYp7_0OZmm5CuWS8ml4mpC0gvCtvcN0gghtc0eItIuthZTog57tL1vA90lH94oBAruA4JFRzeHKnpHoRvCYDd07_sNbQblA9ItQgxjY3R9oMt2TdG26ZB6bNIlOathm3D6fS_I68P9evGUrZ4fl4u7VWY503Uma1YJpVRe6KKwAAglc6LMQbNcC6dBSNA1Fwx0PnfIpSyU1UyoonZ5VdbigrDjro1tShFr00XfQDwYzszIzYxgzAjGHLkNletjxbedeW93MQwPGoyfRhluGC_mnJvOjds3fwT_3f0C6M9-gg</recordid><startdate>20250331</startdate><enddate>20250331</enddate><creator>El Hariri, Ayyoub</creator><creator>Mouiti, Mohammed</creator><creator>Lazaar, Mohamed</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-8523-4653</orcidid><orcidid>https://orcid.org/0009-0007-4244-0644</orcidid></search><sort><creationdate>20250331</creationdate><title>Realtime ransomware process detection using an advanced hybrid approach with machine learning within IoT ecosystems</title><author>El Hariri, Ayyoub ; Mouiti, Mohammed ; Lazaar, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c109f-6f0b377745955caaea80d384a90493d9a36a9f130a942de16657c90375fd4b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>data augmentation for malware detection</topic><topic>entropy and frequency analysis</topic><topic>machine learning in cybersecurity</topic><topic>malware detection</topic><topic>ransomware detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hariri, Ayyoub</creatorcontrib><creatorcontrib>Mouiti, Mohammed</creatorcontrib><creatorcontrib>Lazaar, Mohamed</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Engineering Research Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hariri, Ayyoub</au><au>Mouiti, Mohammed</au><au>Lazaar, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realtime ransomware process detection using an advanced hybrid approach with machine learning within IoT ecosystems</atitle><jtitle>Engineering Research Express</jtitle><stitle>ERX</stitle><addtitle>Eng. Res. Express</addtitle><date>2025-03-31</date><risdate>2025</risdate><volume>7</volume><issue>1</issue><spage>15211</spage><pages>15211-</pages><issn>2631-8695</issn><eissn>2631-8695</eissn><coden>ERENBL</coden><abstract>Cybersecurity faces significant challenges from malicious attacks, malware, and ransomware variants, posing serious threats to computer systems, infrastructure, data centers, web and mobile applications across diverse sectors. Conventional anti-ransomware systems struggle to keep pace with evolving sophisticated threats. Therefore, advanced methodologies, including both traditional and artificial intelligence based approaches, are becoming increasingly crucial in developing innovative ransomware countermeasures. This study presents a novel hybrid detection framework for ransomware, combining entropy and frequency analysis with various machine learning algorithms, including Multi-Layer Perceptron MLP, Decision Trees DT, Random Forests RF, K-Nearest Neighbor KNN, and Logistic Regression LR. We evaluate the classification performance of these models using a specialized ransomware dataset. Our approach also incorporates data augmentation techniques to enhance the detection capabilities, generating synthetic data based on the original ransomware samples. Our experiments demonstrate that the DT and RF classifiers significantly outperform other methods in terms of accuracy, F1-score, and precision. Specifically, the DT classifier achieved an accuracy of 98.89%, an F1-score of 98.81%, and a precision of 98.90%, while the RF classifier achieved an accuracy of 98.78%, an F1-score of 98.23%, and a precision of 98.99%. The integration of data augmentation further boosted the model’s performance, resulting in substantial improvements across all metrics.</abstract><pub>IOP Publishing</pub><doi>10.1088/2631-8695/ada3b3</doi><tpages>24</tpages><orcidid>https://orcid.org/0009-0008-8523-4653</orcidid><orcidid>https://orcid.org/0009-0007-4244-0644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2631-8695 |
ispartof | Engineering Research Express, 2025-03, Vol.7 (1), p.15211 |
issn | 2631-8695 2631-8695 |
language | eng |
recordid | cdi_iop_journals_10_1088_2631_8695_ada3b3 |
source | Institute of Physics Journals; EZB-FREE-00999 freely available EZB journals |
subjects | data augmentation for malware detection entropy and frequency analysis machine learning in cybersecurity malware detection ransomware detection |
title | Realtime ransomware process detection using an advanced hybrid approach with machine learning within IoT ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realtime%20ransomware%20process%20detection%20using%20an%20advanced%20hybrid%20approach%20with%20machine%20learning%20within%20IoT%20ecosystems&rft.jtitle=Engineering%20Research%20Express&rft.au=El%20Hariri,%20Ayyoub&rft.date=2025-03-31&rft.volume=7&rft.issue=1&rft.spage=15211&rft.pages=15211-&rft.issn=2631-8695&rft.eissn=2631-8695&rft.coden=ERENBL&rft_id=info:doi/10.1088/2631-8695/ada3b3&rft_dat=%3Ciop_cross%3Eerxada3b3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |