True 3D reconstruction in digital holography

We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JPhys photonics 2020-10, Vol.2 (4), p.44004
Hauptverfasser: Birdi, Jasleen, Rajora, Sunaina, Butola, Mansi, Khare, Kedar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 44004
container_title JPhys photonics
container_volume 2
creator Birdi, Jasleen
Rajora, Sunaina
Butola, Mansi
Khare, Kedar
description We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.
doi_str_mv 10.1088/2515-7647/abb586
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2515_7647_abb586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581796139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EElXpzhiJkYaeP-LYIyoUkCqxlNmyHbtNVWLjJEP_e1IFAQNMd3r6vXe6h9A1hjsMQixIgYu85KxcaGMKwc_Q5Fs6_7Vfolnb7gGAlJIB4RM036TeZfQhS86Gpu1Sb7s6NFndZFW9rTt9yHbhELZJx93xCl14fWjd7GtO0dvqcbN8ztevTy_L-3VuqeBdXhHvsXGMeadF5XRheAWOAnAvhZaVxdwYSjz12juPS4KtBDkohFtDQNMpuhlzYwofvWs7tQ99aoaTihQCl5JjKgcKRsqm0LbJeRVT_a7TUWFQp1rU6W91-luNtQyW29FSh_iTuY9xF7rQKKKYAsYAmIqVH-j5H_S_4Z-_x3Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581796139</pqid></control><display><type>article</type><title>True 3D reconstruction in digital holography</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Birdi, Jasleen ; Rajora, Sunaina ; Butola, Mansi ; Khare, Kedar</creator><creatorcontrib>Birdi, Jasleen ; Rajora, Sunaina ; Butola, Mansi ; Khare, Kedar</creatorcontrib><description>We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.</description><identifier>ISSN: 2515-7647</identifier><identifier>EISSN: 2515-7647</identifier><identifier>DOI: 10.1088/2515-7647/abb586</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>3D imaging ; Algorithms ; Approximation ; Back propagation ; computational imaging ; Digital imaging ; Holograms ; Holography ; Image reconstruction ; Mathematical analysis ; Optimization ; Recording ; Wave propagation</subject><ispartof>JPhys photonics, 2020-10, Vol.2 (4), p.44004</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</citedby><cites>FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</cites><orcidid>0000-0002-3104-3850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7647/abb586/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Birdi, Jasleen</creatorcontrib><creatorcontrib>Rajora, Sunaina</creatorcontrib><creatorcontrib>Butola, Mansi</creatorcontrib><creatorcontrib>Khare, Kedar</creatorcontrib><title>True 3D reconstruction in digital holography</title><title>JPhys photonics</title><addtitle>JPhysPhotonics</addtitle><addtitle>J. Phys. Photonics</addtitle><description>We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.</description><subject>3D imaging</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Back propagation</subject><subject>computational imaging</subject><subject>Digital imaging</subject><subject>Holograms</subject><subject>Holography</subject><subject>Image reconstruction</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Recording</subject><subject>Wave propagation</subject><issn>2515-7647</issn><issn>2515-7647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1PwzAQxS0EElXpzhiJkYaeP-LYIyoUkCqxlNmyHbtNVWLjJEP_e1IFAQNMd3r6vXe6h9A1hjsMQixIgYu85KxcaGMKwc_Q5Fs6_7Vfolnb7gGAlJIB4RM036TeZfQhS86Gpu1Sb7s6NFndZFW9rTt9yHbhELZJx93xCl14fWjd7GtO0dvqcbN8ztevTy_L-3VuqeBdXhHvsXGMeadF5XRheAWOAnAvhZaVxdwYSjz12juPS4KtBDkohFtDQNMpuhlzYwofvWs7tQ99aoaTihQCl5JjKgcKRsqm0LbJeRVT_a7TUWFQp1rU6W91-luNtQyW29FSh_iTuY9xF7rQKKKYAsYAmIqVH-j5H_S_4Z-_x3Ig</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Birdi, Jasleen</creator><creator>Rajora, Sunaina</creator><creator>Butola, Mansi</creator><creator>Khare, Kedar</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3104-3850</orcidid></search><sort><creationdate>20201001</creationdate><title>True 3D reconstruction in digital holography</title><author>Birdi, Jasleen ; Rajora, Sunaina ; Butola, Mansi ; Khare, Kedar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D imaging</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Back propagation</topic><topic>computational imaging</topic><topic>Digital imaging</topic><topic>Holograms</topic><topic>Holography</topic><topic>Image reconstruction</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Recording</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birdi, Jasleen</creatorcontrib><creatorcontrib>Rajora, Sunaina</creatorcontrib><creatorcontrib>Butola, Mansi</creatorcontrib><creatorcontrib>Khare, Kedar</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>JPhys photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birdi, Jasleen</au><au>Rajora, Sunaina</au><au>Butola, Mansi</au><au>Khare, Kedar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>True 3D reconstruction in digital holography</atitle><jtitle>JPhys photonics</jtitle><stitle>JPhysPhotonics</stitle><addtitle>J. Phys. Photonics</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>2</volume><issue>4</issue><spage>44004</spage><pages>44004-</pages><issn>2515-7647</issn><eissn>2515-7647</eissn><abstract>We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7647/abb586</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3104-3850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2515-7647
ispartof JPhys photonics, 2020-10, Vol.2 (4), p.44004
issn 2515-7647
2515-7647
language eng
recordid cdi_iop_journals_10_1088_2515_7647_abb586
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals
subjects 3D imaging
Algorithms
Approximation
Back propagation
computational imaging
Digital imaging
Holograms
Holography
Image reconstruction
Mathematical analysis
Optimization
Recording
Wave propagation
title True 3D reconstruction in digital holography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=True%203D%20reconstruction%20in%20digital%20holography&rft.jtitle=JPhys%20photonics&rft.au=Birdi,%20Jasleen&rft.date=2020-10-01&rft.volume=2&rft.issue=4&rft.spage=44004&rft.pages=44004-&rft.issn=2515-7647&rft.eissn=2515-7647&rft_id=info:doi/10.1088/2515-7647/abb586&rft_dat=%3Cproquest_iop_j%3E2581796139%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581796139&rft_id=info:pmid/&rfr_iscdi=true