True 3D reconstruction in digital holography
We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hol...
Gespeichert in:
Veröffentlicht in: | JPhys photonics 2020-10, Vol.2 (4), p.44004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 44004 |
container_title | JPhys photonics |
container_volume | 2 |
creator | Birdi, Jasleen Rajora, Sunaina Butola, Mansi Khare, Kedar |
description | We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems. |
doi_str_mv | 10.1088/2515-7647/abb586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2515_7647_abb586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581796139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EElXpzhiJkYaeP-LYIyoUkCqxlNmyHbtNVWLjJEP_e1IFAQNMd3r6vXe6h9A1hjsMQixIgYu85KxcaGMKwc_Q5Fs6_7Vfolnb7gGAlJIB4RM036TeZfQhS86Gpu1Sb7s6NFndZFW9rTt9yHbhELZJx93xCl14fWjd7GtO0dvqcbN8ztevTy_L-3VuqeBdXhHvsXGMeadF5XRheAWOAnAvhZaVxdwYSjz12juPS4KtBDkohFtDQNMpuhlzYwofvWs7tQ99aoaTihQCl5JjKgcKRsqm0LbJeRVT_a7TUWFQp1rU6W91-luNtQyW29FSh_iTuY9xF7rQKKKYAsYAmIqVH-j5H_S_4Z-_x3Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581796139</pqid></control><display><type>article</type><title>True 3D reconstruction in digital holography</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Birdi, Jasleen ; Rajora, Sunaina ; Butola, Mansi ; Khare, Kedar</creator><creatorcontrib>Birdi, Jasleen ; Rajora, Sunaina ; Butola, Mansi ; Khare, Kedar</creatorcontrib><description>We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.</description><identifier>ISSN: 2515-7647</identifier><identifier>EISSN: 2515-7647</identifier><identifier>DOI: 10.1088/2515-7647/abb586</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>3D imaging ; Algorithms ; Approximation ; Back propagation ; computational imaging ; Digital imaging ; Holograms ; Holography ; Image reconstruction ; Mathematical analysis ; Optimization ; Recording ; Wave propagation</subject><ispartof>JPhys photonics, 2020-10, Vol.2 (4), p.44004</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</citedby><cites>FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</cites><orcidid>0000-0002-3104-3850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7647/abb586/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Birdi, Jasleen</creatorcontrib><creatorcontrib>Rajora, Sunaina</creatorcontrib><creatorcontrib>Butola, Mansi</creatorcontrib><creatorcontrib>Khare, Kedar</creatorcontrib><title>True 3D reconstruction in digital holography</title><title>JPhys photonics</title><addtitle>JPhysPhotonics</addtitle><addtitle>J. Phys. Photonics</addtitle><description>We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.</description><subject>3D imaging</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Back propagation</subject><subject>computational imaging</subject><subject>Digital imaging</subject><subject>Holograms</subject><subject>Holography</subject><subject>Image reconstruction</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Recording</subject><subject>Wave propagation</subject><issn>2515-7647</issn><issn>2515-7647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1PwzAQxS0EElXpzhiJkYaeP-LYIyoUkCqxlNmyHbtNVWLjJEP_e1IFAQNMd3r6vXe6h9A1hjsMQixIgYu85KxcaGMKwc_Q5Fs6_7Vfolnb7gGAlJIB4RM036TeZfQhS86Gpu1Sb7s6NFndZFW9rTt9yHbhELZJx93xCl14fWjd7GtO0dvqcbN8ztevTy_L-3VuqeBdXhHvsXGMeadF5XRheAWOAnAvhZaVxdwYSjz12juPS4KtBDkohFtDQNMpuhlzYwofvWs7tQ99aoaTihQCl5JjKgcKRsqm0LbJeRVT_a7TUWFQp1rU6W91-luNtQyW29FSh_iTuY9xF7rQKKKYAsYAmIqVH-j5H_S_4Z-_x3Ig</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Birdi, Jasleen</creator><creator>Rajora, Sunaina</creator><creator>Butola, Mansi</creator><creator>Khare, Kedar</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3104-3850</orcidid></search><sort><creationdate>20201001</creationdate><title>True 3D reconstruction in digital holography</title><author>Birdi, Jasleen ; Rajora, Sunaina ; Butola, Mansi ; Khare, Kedar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d2ff1be44fea8dea5b6d0e3006f98a9dc16bb32f3fafef1721c909b3226cb20a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D imaging</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Back propagation</topic><topic>computational imaging</topic><topic>Digital imaging</topic><topic>Holograms</topic><topic>Holography</topic><topic>Image reconstruction</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Recording</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birdi, Jasleen</creatorcontrib><creatorcontrib>Rajora, Sunaina</creatorcontrib><creatorcontrib>Butola, Mansi</creatorcontrib><creatorcontrib>Khare, Kedar</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>JPhys photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birdi, Jasleen</au><au>Rajora, Sunaina</au><au>Butola, Mansi</au><au>Khare, Kedar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>True 3D reconstruction in digital holography</atitle><jtitle>JPhys photonics</jtitle><stitle>JPhysPhotonics</stitle><addtitle>J. Phys. Photonics</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>2</volume><issue>4</issue><spage>44004</spage><pages>44004-</pages><issn>2515-7647</issn><eissn>2515-7647</eissn><abstract>We examine the nature of the reconstructed 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which on a first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense, the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the physical process involved in traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7647/abb586</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3104-3850</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2515-7647 |
ispartof | JPhys photonics, 2020-10, Vol.2 (4), p.44004 |
issn | 2515-7647 2515-7647 |
language | eng |
recordid | cdi_iop_journals_10_1088_2515_7647_abb586 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals |
subjects | 3D imaging Algorithms Approximation Back propagation computational imaging Digital imaging Holograms Holography Image reconstruction Mathematical analysis Optimization Recording Wave propagation |
title | True 3D reconstruction in digital holography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=True%203D%20reconstruction%20in%20digital%20holography&rft.jtitle=JPhys%20photonics&rft.au=Birdi,%20Jasleen&rft.date=2020-10-01&rft.volume=2&rft.issue=4&rft.spage=44004&rft.pages=44004-&rft.issn=2515-7647&rft.eissn=2515-7647&rft_id=info:doi/10.1088/2515-7647/abb586&rft_dat=%3Cproquest_iop_j%3E2581796139%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581796139&rft_id=info:pmid/&rfr_iscdi=true |