Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application

A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JPhys materials 2023-01, Vol.6 (1), p.015002
Hauptverfasser: Liu, Shi, Ji, Jianqi, Wang, Yixing, Yan, Cenqi, Bai, Huitao, Qin, Jiaqiang, Cheng, Pei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 015002
container_title JPhys materials
container_volume 6
creator Liu, Shi
Ji, Jianqi
Wang, Yixing
Yan, Cenqi
Bai, Huitao
Qin, Jiaqiang
Cheng, Pei
description A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.
doi_str_mv 10.1088/2515-7639/acaa59
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2515_7639_acaa59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4992c3c9ab2048b8b2109dbf3b662f9b</doaj_id><sourcerecordid>2756194056</sourcerecordid><originalsourceid>FETCH-LOGICAL-d363t-5b3580056732a3b4fd078c83c9fe57701d665258e9b9bbb3522258a838650a243</originalsourceid><addsrcrecordid>eNptkU1rGzEURYdCoSbNvktBdiVT62OkkboroUkMBi_arsWT5o0tM7ZUabzIv68cm2TTlXiX866ETtN8YfQbo1ovuWSy7ZUwS_AA0nxoFm_Rp-a2lD2llPemo12_aMojuBw8zCEeSRzJLmx3bTnlETy2kBHuya-w4aScUop5xoGkOL2EQxiQeMiubgHmuMWJHILPsaQdZizfCU7o5xz9DmsOE4GUpus9n5uPI0wFb6_nTfPn8efvh-d2vXlaPfxYt4NQYm6lE1JTKlUvOAjXjQPttdfCmxFl31M2KCW51Gicca7CnNcJtNBKUuCduGlWl94hwt6mHA6QX2yEYF-DmLcW8hz8hLYzhvvaDI7TTjvtOKNmcKNwSvHRuNp1d-lKOf49YZntPp7ysT7f8l4qVr9TqkrdX6gQ0zvAqD2bsWcN9qzBXsxU_Ot_8H06wIzZKsssZbLKsmkYxT-VTZIM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756194056</pqid></control><display><type>article</type><title>Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Shi ; Ji, Jianqi ; Wang, Yixing ; Yan, Cenqi ; Bai, Huitao ; Qin, Jiaqiang ; Cheng, Pei</creator><creatorcontrib>Liu, Shi ; Ji, Jianqi ; Wang, Yixing ; Yan, Cenqi ; Bai, Huitao ; Qin, Jiaqiang ; Cheng, Pei</creatorcontrib><description>A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.</description><identifier>EISSN: 2515-7639</identifier><identifier>DOI: 10.1088/2515-7639/acaa59</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aerogels ; Capacitance ; Carbon ; carbon aerogel microspheres ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electron microscopes ; Microspheres ; Polyamide resins ; polyimide ; reverse emulsion ; Silicon dioxide ; SiO ; SiO2 ; Specific surface ; supercapacitors ; Surface area ; Tetraethyl orthosilicate ; Workstations</subject><ispartof>JPhys materials, 2023-01, Vol.6 (1), p.015002</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1012-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7639/acaa59/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Liu, Shi</creatorcontrib><creatorcontrib>Ji, Jianqi</creatorcontrib><creatorcontrib>Wang, Yixing</creatorcontrib><creatorcontrib>Yan, Cenqi</creatorcontrib><creatorcontrib>Bai, Huitao</creatorcontrib><creatorcontrib>Qin, Jiaqiang</creatorcontrib><creatorcontrib>Cheng, Pei</creatorcontrib><title>Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application</title><title>JPhys materials</title><addtitle>JPhysMaterials</addtitle><addtitle>J. Phys. Mater</addtitle><description>A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.</description><subject>Aerogels</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>carbon aerogel microspheres</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron microscopes</subject><subject>Microspheres</subject><subject>Polyamide resins</subject><subject>polyimide</subject><subject>reverse emulsion</subject><subject>Silicon dioxide</subject><subject>SiO</subject><subject>SiO2</subject><subject>Specific surface</subject><subject>supercapacitors</subject><subject>Surface area</subject><subject>Tetraethyl orthosilicate</subject><subject>Workstations</subject><issn>2515-7639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1rGzEURYdCoSbNvktBdiVT62OkkboroUkMBi_arsWT5o0tM7ZUabzIv68cm2TTlXiX866ETtN8YfQbo1ovuWSy7ZUwS_AA0nxoFm_Rp-a2lD2llPemo12_aMojuBw8zCEeSRzJLmx3bTnlETy2kBHuya-w4aScUop5xoGkOL2EQxiQeMiubgHmuMWJHILPsaQdZizfCU7o5xz9DmsOE4GUpus9n5uPI0wFb6_nTfPn8efvh-d2vXlaPfxYt4NQYm6lE1JTKlUvOAjXjQPttdfCmxFl31M2KCW51Gicca7CnNcJtNBKUuCduGlWl94hwt6mHA6QX2yEYF-DmLcW8hz8hLYzhvvaDI7TTjvtOKNmcKNwSvHRuNp1d-lKOf49YZntPp7ysT7f8l4qVr9TqkrdX6gQ0zvAqD2bsWcN9qzBXsxU_Ot_8H06wIzZKsssZbLKsmkYxT-VTZIM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Shi</creator><creator>Ji, Jianqi</creator><creator>Wang, Yixing</creator><creator>Yan, Cenqi</creator><creator>Bai, Huitao</creator><creator>Qin, Jiaqiang</creator><creator>Cheng, Pei</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1012-749X</orcidid></search><sort><creationdate>20230101</creationdate><title>Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application</title><author>Liu, Shi ; Ji, Jianqi ; Wang, Yixing ; Yan, Cenqi ; Bai, Huitao ; Qin, Jiaqiang ; Cheng, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d363t-5b3580056732a3b4fd078c83c9fe57701d665258e9b9bbb3522258a838650a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerogels</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>carbon aerogel microspheres</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron microscopes</topic><topic>Microspheres</topic><topic>Polyamide resins</topic><topic>polyimide</topic><topic>reverse emulsion</topic><topic>Silicon dioxide</topic><topic>SiO</topic><topic>SiO2</topic><topic>Specific surface</topic><topic>supercapacitors</topic><topic>Surface area</topic><topic>Tetraethyl orthosilicate</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shi</creatorcontrib><creatorcontrib>Ji, Jianqi</creatorcontrib><creatorcontrib>Wang, Yixing</creatorcontrib><creatorcontrib>Yan, Cenqi</creatorcontrib><creatorcontrib>Bai, Huitao</creatorcontrib><creatorcontrib>Qin, Jiaqiang</creatorcontrib><creatorcontrib>Cheng, Pei</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JPhys materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shi</au><au>Ji, Jianqi</au><au>Wang, Yixing</au><au>Yan, Cenqi</au><au>Bai, Huitao</au><au>Qin, Jiaqiang</au><au>Cheng, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application</atitle><jtitle>JPhys materials</jtitle><stitle>JPhysMaterials</stitle><addtitle>J. Phys. Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>015002</spage><pages>015002-</pages><eissn>2515-7639</eissn><abstract>A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7639/acaa59</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1012-749X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2515-7639
ispartof JPhys materials, 2023-01, Vol.6 (1), p.015002
issn 2515-7639
language eng
recordid cdi_iop_journals_10_1088_2515_7639_acaa59
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals
subjects Aerogels
Capacitance
Carbon
carbon aerogel microspheres
Electrochemical analysis
Electrode materials
Electrodes
Electron microscopes
Microspheres
Polyamide resins
polyimide
reverse emulsion
Silicon dioxide
SiO
SiO2
Specific surface
supercapacitors
Surface area
Tetraethyl orthosilicate
Workstations
title Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20high-surface-area,%20SiO2%20supported%20polyimide%20carbon%20aerogel%20microspheres:%20electrochemical%20application&rft.jtitle=JPhys%20materials&rft.au=Liu,%20Shi&rft.date=2023-01-01&rft.volume=6&rft.issue=1&rft.spage=015002&rft.pages=015002-&rft.eissn=2515-7639&rft_id=info:doi/10.1088/2515-7639/acaa59&rft_dat=%3Cproquest_iop_j%3E2756194056%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756194056&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4992c3c9ab2048b8b2109dbf3b662f9b&rfr_iscdi=true