Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints
Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By...
Gespeichert in:
Veröffentlicht in: | Environmental Research Communications 2024-07, Vol.6 (7), p.71002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 71002 |
container_title | Environmental Research Communications |
container_volume | 6 |
creator | Zhang, Jinge Li, Chunxiang Zhao, Tianbao |
description | Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties. |
doi_str_mv | 10.1088/2515-7620/ad5ad9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2515_7620_ad5ad9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_06203b27218342079dd4a1e2a41f1fdc</doaj_id><sourcerecordid>3076422064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-b773f81817daa89919f88e54dcd823960ddf3006434bae069824b432a5e0f5c63</originalsourceid><addsrcrecordid>eNp9UU1rGzEUFKWBGif3HBcKPdXN08eutL0V0zSBQAkkZ_GsD1vGXm20coL_fbXZkIRSenofmhk9Zgg5p_CNglIXrKb1QjYMLtDWaNsPZPa6-viu_0TOhmELAEy2AqiYkf72gLvgj6FbV4fOuJQxdPlYRV_1yZnQh4w5xK5McevM2A5VfHSpWm5Ch9-rfchhXSB_8Z9C3lRu79LadbkyhZXT-DKckhOPu8GdvdQ5ub_8ebe8Wtz8_nW9_HGzMJxDXqyk5F5RRaVFVG1LW6-Uq4U1VjHeNmCt5wCN4GKFDppWMbESnGHtwNem4XNyPenaiFvdp7DHdNQRg35exLTWmHIwO6ehOMNXTDKquGAgW2sFUsdQUE-9NUXr86RVTHg4uCHrbTykrpyvOchGMDYeMicwoUyKw5Ccf_2Vgh5j0mMOesxBTzEVyteJEmL_pvkf-Jd_wF0yutFSg6QlWN0XY_4A_DOiCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076422064</pqid></control><display><type>article</type><title>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Jinge ; Li, Chunxiang ; Zhao, Tianbao</creator><creatorcontrib>Zhang, Jinge ; Li, Chunxiang ; Zhao, Tianbao</creatorcontrib><description>Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.</description><identifier>ISSN: 2515-7620</identifier><identifier>EISSN: 2515-7620</identifier><identifier>DOI: 10.1088/2515-7620/ad5ad9</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Climate adaptation ; Climate models ; Climate prediction ; Constraints ; Effectiveness ; Monsoons ; Parameters ; Precipitation ; Probability distribution functions ; Resource management ; Uncertainty ; Water resources management</subject><ispartof>Environmental Research Communications, 2024-07, Vol.6 (7), p.71002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c330t-b773f81817daa89919f88e54dcd823960ddf3006434bae069824b432a5e0f5c63</cites><orcidid>0000-0002-8295-6537 ; 0009-0009-2028-9458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7620/ad5ad9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Zhang, Jinge</creatorcontrib><creatorcontrib>Li, Chunxiang</creatorcontrib><creatorcontrib>Zhao, Tianbao</creatorcontrib><title>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</title><title>Environmental Research Communications</title><addtitle>ERC</addtitle><addtitle>Environ. Res. Commun</addtitle><description>Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.</description><subject>Climate adaptation</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Constraints</subject><subject>Effectiveness</subject><subject>Monsoons</subject><subject>Parameters</subject><subject>Precipitation</subject><subject>Probability distribution functions</subject><subject>Resource management</subject><subject>Uncertainty</subject><subject>Water resources management</subject><issn>2515-7620</issn><issn>2515-7620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1rGzEUFKWBGif3HBcKPdXN08eutL0V0zSBQAkkZ_GsD1vGXm20coL_fbXZkIRSenofmhk9Zgg5p_CNglIXrKb1QjYMLtDWaNsPZPa6-viu_0TOhmELAEy2AqiYkf72gLvgj6FbV4fOuJQxdPlYRV_1yZnQh4w5xK5McevM2A5VfHSpWm5Ch9-rfchhXSB_8Z9C3lRu79LadbkyhZXT-DKckhOPu8GdvdQ5ub_8ebe8Wtz8_nW9_HGzMJxDXqyk5F5RRaVFVG1LW6-Uq4U1VjHeNmCt5wCN4GKFDppWMbESnGHtwNem4XNyPenaiFvdp7DHdNQRg35exLTWmHIwO6ehOMNXTDKquGAgW2sFUsdQUE-9NUXr86RVTHg4uCHrbTykrpyvOchGMDYeMicwoUyKw5Ccf_2Vgh5j0mMOesxBTzEVyteJEmL_pvkf-Jd_wF0yutFSg6QlWN0XY_4A_DOiCg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhang, Jinge</creator><creator>Li, Chunxiang</creator><creator>Zhao, Tianbao</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8295-6537</orcidid><orcidid>https://orcid.org/0009-0009-2028-9458</orcidid></search><sort><creationdate>20240701</creationdate><title>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</title><author>Zhang, Jinge ; Li, Chunxiang ; Zhao, Tianbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-b773f81817daa89919f88e54dcd823960ddf3006434bae069824b432a5e0f5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climate adaptation</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Constraints</topic><topic>Effectiveness</topic><topic>Monsoons</topic><topic>Parameters</topic><topic>Precipitation</topic><topic>Probability distribution functions</topic><topic>Resource management</topic><topic>Uncertainty</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinge</creatorcontrib><creatorcontrib>Li, Chunxiang</creatorcontrib><creatorcontrib>Zhao, Tianbao</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental Research Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinge</au><au>Li, Chunxiang</au><au>Zhao, Tianbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</atitle><jtitle>Environmental Research Communications</jtitle><stitle>ERC</stitle><addtitle>Environ. Res. Commun</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>6</volume><issue>7</issue><spage>71002</spage><pages>71002-</pages><issn>2515-7620</issn><eissn>2515-7620</eissn><abstract>Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7620/ad5ad9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8295-6537</orcidid><orcidid>https://orcid.org/0009-0009-2028-9458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2515-7620 |
ispartof | Environmental Research Communications, 2024-07, Vol.6 (7), p.71002 |
issn | 2515-7620 2515-7620 |
language | eng |
recordid | cdi_iop_journals_10_1088_2515_7620_ad5ad9 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Climate adaptation Climate models Climate prediction Constraints Effectiveness Monsoons Parameters Precipitation Probability distribution functions Resource management Uncertainty Water resources management |
title | Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualifying%20uncertainty%20of%20precipitation%20projections%20over%20China:%20mitigating%20uncertainty%20with%20emergent%20constraints&rft.jtitle=Environmental%20Research%20Communications&rft.au=Zhang,%20Jinge&rft.date=2024-07-01&rft.volume=6&rft.issue=7&rft.spage=71002&rft.pages=71002-&rft.issn=2515-7620&rft.eissn=2515-7620&rft_id=info:doi/10.1088/2515-7620/ad5ad9&rft_dat=%3Cproquest_iop_j%3E3076422064%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076422064&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_06203b27218342079dd4a1e2a41f1fdc&rfr_iscdi=true |