Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints

Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Research Communications 2024-07, Vol.6 (7), p.71002
Hauptverfasser: Zhang, Jinge, Li, Chunxiang, Zhao, Tianbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 71002
container_title Environmental Research Communications
container_volume 6
creator Zhang, Jinge
Li, Chunxiang
Zhao, Tianbao
description Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.
doi_str_mv 10.1088/2515-7620/ad5ad9
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2515_7620_ad5ad9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_06203b27218342079dd4a1e2a41f1fdc</doaj_id><sourcerecordid>3076422064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-b773f81817daa89919f88e54dcd823960ddf3006434bae069824b432a5e0f5c63</originalsourceid><addsrcrecordid>eNp9UU1rGzEUFKWBGif3HBcKPdXN08eutL0V0zSBQAkkZ_GsD1vGXm20coL_fbXZkIRSenofmhk9Zgg5p_CNglIXrKb1QjYMLtDWaNsPZPa6-viu_0TOhmELAEy2AqiYkf72gLvgj6FbV4fOuJQxdPlYRV_1yZnQh4w5xK5McevM2A5VfHSpWm5Ch9-rfchhXSB_8Z9C3lRu79LadbkyhZXT-DKckhOPu8GdvdQ5ub_8ebe8Wtz8_nW9_HGzMJxDXqyk5F5RRaVFVG1LW6-Uq4U1VjHeNmCt5wCN4GKFDppWMbESnGHtwNem4XNyPenaiFvdp7DHdNQRg35exLTWmHIwO6ehOMNXTDKquGAgW2sFUsdQUE-9NUXr86RVTHg4uCHrbTykrpyvOchGMDYeMicwoUyKw5Ccf_2Vgh5j0mMOesxBTzEVyteJEmL_pvkf-Jd_wF0yutFSg6QlWN0XY_4A_DOiCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076422064</pqid></control><display><type>article</type><title>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Jinge ; Li, Chunxiang ; Zhao, Tianbao</creator><creatorcontrib>Zhang, Jinge ; Li, Chunxiang ; Zhao, Tianbao</creatorcontrib><description>Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.</description><identifier>ISSN: 2515-7620</identifier><identifier>EISSN: 2515-7620</identifier><identifier>DOI: 10.1088/2515-7620/ad5ad9</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Climate adaptation ; Climate models ; Climate prediction ; Constraints ; Effectiveness ; Monsoons ; Parameters ; Precipitation ; Probability distribution functions ; Resource management ; Uncertainty ; Water resources management</subject><ispartof>Environmental Research Communications, 2024-07, Vol.6 (7), p.71002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c330t-b773f81817daa89919f88e54dcd823960ddf3006434bae069824b432a5e0f5c63</cites><orcidid>0000-0002-8295-6537 ; 0009-0009-2028-9458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7620/ad5ad9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Zhang, Jinge</creatorcontrib><creatorcontrib>Li, Chunxiang</creatorcontrib><creatorcontrib>Zhao, Tianbao</creatorcontrib><title>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</title><title>Environmental Research Communications</title><addtitle>ERC</addtitle><addtitle>Environ. Res. Commun</addtitle><description>Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.</description><subject>Climate adaptation</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Constraints</subject><subject>Effectiveness</subject><subject>Monsoons</subject><subject>Parameters</subject><subject>Precipitation</subject><subject>Probability distribution functions</subject><subject>Resource management</subject><subject>Uncertainty</subject><subject>Water resources management</subject><issn>2515-7620</issn><issn>2515-7620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1rGzEUFKWBGif3HBcKPdXN08eutL0V0zSBQAkkZ_GsD1vGXm20coL_fbXZkIRSenofmhk9Zgg5p_CNglIXrKb1QjYMLtDWaNsPZPa6-viu_0TOhmELAEy2AqiYkf72gLvgj6FbV4fOuJQxdPlYRV_1yZnQh4w5xK5McevM2A5VfHSpWm5Ch9-rfchhXSB_8Z9C3lRu79LadbkyhZXT-DKckhOPu8GdvdQ5ub_8ebe8Wtz8_nW9_HGzMJxDXqyk5F5RRaVFVG1LW6-Uq4U1VjHeNmCt5wCN4GKFDppWMbESnGHtwNem4XNyPenaiFvdp7DHdNQRg35exLTWmHIwO6ehOMNXTDKquGAgW2sFUsdQUE-9NUXr86RVTHg4uCHrbTykrpyvOchGMDYeMicwoUyKw5Ccf_2Vgh5j0mMOesxBTzEVyteJEmL_pvkf-Jd_wF0yutFSg6QlWN0XY_4A_DOiCg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhang, Jinge</creator><creator>Li, Chunxiang</creator><creator>Zhao, Tianbao</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8295-6537</orcidid><orcidid>https://orcid.org/0009-0009-2028-9458</orcidid></search><sort><creationdate>20240701</creationdate><title>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</title><author>Zhang, Jinge ; Li, Chunxiang ; Zhao, Tianbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-b773f81817daa89919f88e54dcd823960ddf3006434bae069824b432a5e0f5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climate adaptation</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Constraints</topic><topic>Effectiveness</topic><topic>Monsoons</topic><topic>Parameters</topic><topic>Precipitation</topic><topic>Probability distribution functions</topic><topic>Resource management</topic><topic>Uncertainty</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinge</creatorcontrib><creatorcontrib>Li, Chunxiang</creatorcontrib><creatorcontrib>Zhao, Tianbao</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental Research Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinge</au><au>Li, Chunxiang</au><au>Zhao, Tianbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints</atitle><jtitle>Environmental Research Communications</jtitle><stitle>ERC</stitle><addtitle>Environ. Res. Commun</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>6</volume><issue>7</issue><spage>71002</spage><pages>71002-</pages><issn>2515-7620</issn><eissn>2515-7620</eissn><abstract>Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7620/ad5ad9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8295-6537</orcidid><orcidid>https://orcid.org/0009-0009-2028-9458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2515-7620
ispartof Environmental Research Communications, 2024-07, Vol.6 (7), p.71002
issn 2515-7620
2515-7620
language eng
recordid cdi_iop_journals_10_1088_2515_7620_ad5ad9
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Climate adaptation
Climate models
Climate prediction
Constraints
Effectiveness
Monsoons
Parameters
Precipitation
Probability distribution functions
Resource management
Uncertainty
Water resources management
title Qualifying uncertainty of precipitation projections over China: mitigating uncertainty with emergent constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualifying%20uncertainty%20of%20precipitation%20projections%20over%20China:%20mitigating%20uncertainty%20with%20emergent%20constraints&rft.jtitle=Environmental%20Research%20Communications&rft.au=Zhang,%20Jinge&rft.date=2024-07-01&rft.volume=6&rft.issue=7&rft.spage=71002&rft.pages=71002-&rft.issn=2515-7620&rft.eissn=2515-7620&rft_id=info:doi/10.1088/2515-7620/ad5ad9&rft_dat=%3Cproquest_iop_j%3E3076422064%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076422064&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_06203b27218342079dd4a1e2a41f1fdc&rfr_iscdi=true