Stochastic entropy production for continuous measurements of an open quantum system
We investigate the total stochastic entropy production of a two-level bosonic open quantum system under protocols of time dependent coupling to a harmonic environment. These processes are intended to represent the measurement of a system observable, and consequent selection of an eigenstate, whilst...
Gespeichert in:
Veröffentlicht in: | Journal of physics communications 2022-12, Vol.6 (12), p.125003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125003 |
container_title | Journal of physics communications |
container_volume | 6 |
creator | Matos, D Kantorovich, L Ford, I J |
description | We investigate the total stochastic entropy production of a two-level bosonic open quantum system under protocols of time dependent coupling to a harmonic environment. These processes are intended to represent the measurement of a system observable, and consequent selection of an eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy production depends on the evolution of the system variables and their probability density function, and is expressed through system and environmental contributions. The continuous stochastic dynamics of the open system is based on the Markovian approximation to the exact, noise-averaged stochastic Liouville-von Neumann equation, unravelled through the addition of stochastic environmental disturbance mimicking a measuring device. Under the thermalising influence of time independent coupling to the environment, the mean rate of entropy production vanishes asymptotically, indicating equilibrium. In contrast, a positive mean production of entropy as the system responds to time dependent coupling characterises the irreversibility of quantum measurement, and a comparison of its production for two coupling protocols, representing connection to and disconnection from the external measuring device, satisfies a detailed fluctuation theorem. |
doi_str_mv | 10.1088/2399-6528/aca742 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2399_6528_aca742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748456583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-34e990d85cd7a60ed3f4b5ec8c522beedd8d0a5cef7eec75020bfaeb68bcc84a3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGrvHgNePFibTTa72aMUv6DgoXoO2WSCW9xkm49D_3u3rKgHhYEZht97MzyELgtyWxAhVpQ1zbLiVKyUVnVJT9Dse3X6az5Hixh3hBBaN4wzPkPbbfL6XcXUaQwuBT8c8BC8yTp13mHrA9bepc5lnyPuQcUcoB_JiL3FymE_gMP7rFzKPY6HmKC_QGdWfURYfPU5enu4f10_LTcvj8_ru81SM8HSkpXQNMQIrk2tKgKG2bLloIXmlLYAxghDFNdgawBdc0JJaxW0lWi1FqVic3Q1-Y4P7zPEJHc-BzeelLQuRckrLthIkYnSwccYwMohdL0KB1kQeUxPHuORx3jklN4ouZ4knR9-PHeD9rKSBR2LE8LkYOyI3vyB_uv8CT6kgSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748456583</pqid></control><display><type>article</type><title>Stochastic entropy production for continuous measurements of an open quantum system</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matos, D ; Kantorovich, L ; Ford, I J</creator><creatorcontrib>Matos, D ; Kantorovich, L ; Ford, I J</creatorcontrib><description>We investigate the total stochastic entropy production of a two-level bosonic open quantum system under protocols of time dependent coupling to a harmonic environment. These processes are intended to represent the measurement of a system observable, and consequent selection of an eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy production depends on the evolution of the system variables and their probability density function, and is expressed through system and environmental contributions. The continuous stochastic dynamics of the open system is based on the Markovian approximation to the exact, noise-averaged stochastic Liouville-von Neumann equation, unravelled through the addition of stochastic environmental disturbance mimicking a measuring device. Under the thermalising influence of time independent coupling to the environment, the mean rate of entropy production vanishes asymptotically, indicating equilibrium. In contrast, a positive mean production of entropy as the system responds to time dependent coupling characterises the irreversibility of quantum measurement, and a comparison of its production for two coupling protocols, representing connection to and disconnection from the external measuring device, satisfies a detailed fluctuation theorem.</description><identifier>ISSN: 2399-6528</identifier><identifier>EISSN: 2399-6528</identifier><identifier>DOI: 10.1088/2399-6528/aca742</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Entropy ; open quantum systems ; quantum thermodynamics ; stochastic differential equations ; stochastic thermodynamics</subject><ispartof>Journal of physics communications, 2022-12, Vol.6 (12), p.125003</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-34e990d85cd7a60ed3f4b5ec8c522beedd8d0a5cef7eec75020bfaeb68bcc84a3</citedby><cites>FETCH-LOGICAL-c383t-34e990d85cd7a60ed3f4b5ec8c522beedd8d0a5cef7eec75020bfaeb68bcc84a3</cites><orcidid>0000-0002-5252-9286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2399-6528/aca742/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Matos, D</creatorcontrib><creatorcontrib>Kantorovich, L</creatorcontrib><creatorcontrib>Ford, I J</creatorcontrib><title>Stochastic entropy production for continuous measurements of an open quantum system</title><title>Journal of physics communications</title><addtitle>JPCO</addtitle><addtitle>J. Phys. Commun</addtitle><description>We investigate the total stochastic entropy production of a two-level bosonic open quantum system under protocols of time dependent coupling to a harmonic environment. These processes are intended to represent the measurement of a system observable, and consequent selection of an eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy production depends on the evolution of the system variables and their probability density function, and is expressed through system and environmental contributions. The continuous stochastic dynamics of the open system is based on the Markovian approximation to the exact, noise-averaged stochastic Liouville-von Neumann equation, unravelled through the addition of stochastic environmental disturbance mimicking a measuring device. Under the thermalising influence of time independent coupling to the environment, the mean rate of entropy production vanishes asymptotically, indicating equilibrium. In contrast, a positive mean production of entropy as the system responds to time dependent coupling characterises the irreversibility of quantum measurement, and a comparison of its production for two coupling protocols, representing connection to and disconnection from the external measuring device, satisfies a detailed fluctuation theorem.</description><subject>Entropy</subject><subject>open quantum systems</subject><subject>quantum thermodynamics</subject><subject>stochastic differential equations</subject><subject>stochastic thermodynamics</subject><issn>2399-6528</issn><issn>2399-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM1LAzEQxYMoWGrvHgNePFibTTa72aMUv6DgoXoO2WSCW9xkm49D_3u3rKgHhYEZht97MzyELgtyWxAhVpQ1zbLiVKyUVnVJT9Dse3X6az5Hixh3hBBaN4wzPkPbbfL6XcXUaQwuBT8c8BC8yTp13mHrA9bepc5lnyPuQcUcoB_JiL3FymE_gMP7rFzKPY6HmKC_QGdWfURYfPU5enu4f10_LTcvj8_ru81SM8HSkpXQNMQIrk2tKgKG2bLloIXmlLYAxghDFNdgawBdc0JJaxW0lWi1FqVic3Q1-Y4P7zPEJHc-BzeelLQuRckrLthIkYnSwccYwMohdL0KB1kQeUxPHuORx3jklN4ouZ4knR9-PHeD9rKSBR2LE8LkYOyI3vyB_uv8CT6kgSk</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Matos, D</creator><creator>Kantorovich, L</creator><creator>Ford, I J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5252-9286</orcidid></search><sort><creationdate>20221201</creationdate><title>Stochastic entropy production for continuous measurements of an open quantum system</title><author>Matos, D ; Kantorovich, L ; Ford, I J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-34e990d85cd7a60ed3f4b5ec8c522beedd8d0a5cef7eec75020bfaeb68bcc84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Entropy</topic><topic>open quantum systems</topic><topic>quantum thermodynamics</topic><topic>stochastic differential equations</topic><topic>stochastic thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matos, D</creatorcontrib><creatorcontrib>Kantorovich, L</creatorcontrib><creatorcontrib>Ford, I J</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matos, D</au><au>Kantorovich, L</au><au>Ford, I J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic entropy production for continuous measurements of an open quantum system</atitle><jtitle>Journal of physics communications</jtitle><stitle>JPCO</stitle><addtitle>J. Phys. Commun</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>6</volume><issue>12</issue><spage>125003</spage><pages>125003-</pages><issn>2399-6528</issn><eissn>2399-6528</eissn><abstract>We investigate the total stochastic entropy production of a two-level bosonic open quantum system under protocols of time dependent coupling to a harmonic environment. These processes are intended to represent the measurement of a system observable, and consequent selection of an eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy production depends on the evolution of the system variables and their probability density function, and is expressed through system and environmental contributions. The continuous stochastic dynamics of the open system is based on the Markovian approximation to the exact, noise-averaged stochastic Liouville-von Neumann equation, unravelled through the addition of stochastic environmental disturbance mimicking a measuring device. Under the thermalising influence of time independent coupling to the environment, the mean rate of entropy production vanishes asymptotically, indicating equilibrium. In contrast, a positive mean production of entropy as the system responds to time dependent coupling characterises the irreversibility of quantum measurement, and a comparison of its production for two coupling protocols, representing connection to and disconnection from the external measuring device, satisfies a detailed fluctuation theorem.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2399-6528/aca742</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5252-9286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-6528 |
ispartof | Journal of physics communications, 2022-12, Vol.6 (12), p.125003 |
issn | 2399-6528 2399-6528 |
language | eng |
recordid | cdi_iop_journals_10_1088_2399_6528_aca742 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Entropy open quantum systems quantum thermodynamics stochastic differential equations stochastic thermodynamics |
title | Stochastic entropy production for continuous measurements of an open quantum system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T13%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20entropy%20production%20for%20continuous%20measurements%20of%20an%20open%20quantum%20system&rft.jtitle=Journal%20of%20physics%20communications&rft.au=Matos,%20D&rft.date=2022-12-01&rft.volume=6&rft.issue=12&rft.spage=125003&rft.pages=125003-&rft.issn=2399-6528&rft.eissn=2399-6528&rft_id=info:doi/10.1088/2399-6528/aca742&rft_dat=%3Cproquest_iop_j%3E2748456583%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748456583&rft_id=info:pmid/&rfr_iscdi=true |