Stability study of iodinated reduced graphene oxide and its application in self-assembled Al/Bi2O3 nanothermite composites
The direct reduction of graphene oxide (GO) by hydroiodic acid is an established method to produce iodine functionalized reduced GO (I-rGO). However, the stability of the iodine species within I-rGO upon heating and dispersing into different solvents, as required for many applications, has not been...
Gespeichert in:
Veröffentlicht in: | Nano futures 2020-12, Vol.4 (4) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Nano futures |
container_volume | 4 |
creator | Wang, Anqi Bok, Sangho Mathai, Cherian Joseph Gangopadhyay, Keshab McFarland, Jacob Maschmann, Matthew R Gangopadhyay, Shubhra |
description | The direct reduction of graphene oxide (GO) by hydroiodic acid is an established method to produce iodine functionalized reduced GO (I-rGO). However, the stability of the iodine species within I-rGO upon heating and dispersing into different solvents, as required for many applications, has not been examined. Herein we examined the stability of I-rGO and utilized it to promote self-assembled nanoenergetic composites. I-rGO intercalated with polyiodide was found to be unstable at elevated temperature and when dispersed in organic solvents. The I-rGO exhibited excellent dispersion in dimethylformamide but resulted in a loss of iodine content as exfoliation released weakly-bound intercalated iodine species. The dispersed I-rGO was utilized as a scaffold to self-assemble I-rGO/Al and I-rGO/Al/Bi2O3 nanoenergetic composites. The I-rGO both prevented the phase separation of Al and Bi2O3 particles and provided a source for reactive iodine to etch the alumina shell surrounding Al fuel nanoparticles. Differential scanning calorimetry showed that the use of the I-rGO assembly template reduced the temperature of initiation and peak reaction and produced 70% greater energy release than randomly mixed Al/Bi2O3 nanoenergetic powder. In fact, 95% of the exothermal energy released by the reaction occurred while Al was in the solid state, suggesting that the reaction between free iodine and alumina was significant enough to greatly reduce the diffusion barrier between solid Al fuel and surrounding oxidizer. Further, the underlying conductive I-rGO scaffold reduces electrostatic discharge sensitivity of the nanoenergetic composite by almost four orders of magnitude. |
doi_str_mv | 10.1088/2399-1984/abc5ae |
format | Article |
fullrecord | <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_2399_1984_abc5ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nanofabc5ae</sourcerecordid><originalsourceid>FETCH-LOGICAL-i155t-cf34127ff78f335ed18137b53c2587498dafa8d2d7e8eef1bab576fb8c19e9e43</originalsourceid><addsrcrecordid>eNptkL1rwzAQxUWh0JBm76ixQ91IlhTLYxr6BYEMbWchS6dGwZGMJUPTv742KZ3KDe843t3jfgjdUHJPiZTLktV1QWvJl7oxQsMFmv2NrtAipQMhhEpBxIrP0Pdb1o1vfT7hlAd7wtFhH60POoPFPdjBjPrZ624PAXD88hawDhb7nLDuutYbnX0M2AecoHWFTgmOTTsurdvlgy93DAcdYt5Df_QZsInHLqaxS9fo0uk2weJX5-jj6fF981Jsd8-vm_W28FSIXBjHOC0r5yrpGBNgqaSsagQzpZAVr6XVTktb2gokgKONbkS1co00tIYaOJuju_NdHzt1iEMfxjRFiZpwqYmNmtioM67RfvuPffrBKT4W4YKQUnXWsR9v8HE5</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability study of iodinated reduced graphene oxide and its application in self-assembled Al/Bi2O3 nanothermite composites</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wang, Anqi ; Bok, Sangho ; Mathai, Cherian Joseph ; Gangopadhyay, Keshab ; McFarland, Jacob ; Maschmann, Matthew R ; Gangopadhyay, Shubhra</creator><creatorcontrib>Wang, Anqi ; Bok, Sangho ; Mathai, Cherian Joseph ; Gangopadhyay, Keshab ; McFarland, Jacob ; Maschmann, Matthew R ; Gangopadhyay, Shubhra</creatorcontrib><description>The direct reduction of graphene oxide (GO) by hydroiodic acid is an established method to produce iodine functionalized reduced GO (I-rGO). However, the stability of the iodine species within I-rGO upon heating and dispersing into different solvents, as required for many applications, has not been examined. Herein we examined the stability of I-rGO and utilized it to promote self-assembled nanoenergetic composites. I-rGO intercalated with polyiodide was found to be unstable at elevated temperature and when dispersed in organic solvents. The I-rGO exhibited excellent dispersion in dimethylformamide but resulted in a loss of iodine content as exfoliation released weakly-bound intercalated iodine species. The dispersed I-rGO was utilized as a scaffold to self-assemble I-rGO/Al and I-rGO/Al/Bi2O3 nanoenergetic composites. The I-rGO both prevented the phase separation of Al and Bi2O3 particles and provided a source for reactive iodine to etch the alumina shell surrounding Al fuel nanoparticles. Differential scanning calorimetry showed that the use of the I-rGO assembly template reduced the temperature of initiation and peak reaction and produced 70% greater energy release than randomly mixed Al/Bi2O3 nanoenergetic powder. In fact, 95% of the exothermal energy released by the reaction occurred while Al was in the solid state, suggesting that the reaction between free iodine and alumina was significant enough to greatly reduce the diffusion barrier between solid Al fuel and surrounding oxidizer. Further, the underlying conductive I-rGO scaffold reduces electrostatic discharge sensitivity of the nanoenergetic composite by almost four orders of magnitude.</description><identifier>EISSN: 2399-1984</identifier><identifier>DOI: 10.1088/2399-1984/abc5ae</identifier><identifier>CODEN: NFAUB3</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>alumina shell ; aluminum ; iodinated graphene ; nanoenergetics</subject><ispartof>Nano futures, 2020-12, Vol.4 (4)</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0107-3597 ; 0000-0002-0740-6228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2399-1984/abc5ae/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Wang, Anqi</creatorcontrib><creatorcontrib>Bok, Sangho</creatorcontrib><creatorcontrib>Mathai, Cherian Joseph</creatorcontrib><creatorcontrib>Gangopadhyay, Keshab</creatorcontrib><creatorcontrib>McFarland, Jacob</creatorcontrib><creatorcontrib>Maschmann, Matthew R</creatorcontrib><creatorcontrib>Gangopadhyay, Shubhra</creatorcontrib><title>Stability study of iodinated reduced graphene oxide and its application in self-assembled Al/Bi2O3 nanothermite composites</title><title>Nano futures</title><addtitle>NANOF</addtitle><addtitle>Nano Futures</addtitle><description>The direct reduction of graphene oxide (GO) by hydroiodic acid is an established method to produce iodine functionalized reduced GO (I-rGO). However, the stability of the iodine species within I-rGO upon heating and dispersing into different solvents, as required for many applications, has not been examined. Herein we examined the stability of I-rGO and utilized it to promote self-assembled nanoenergetic composites. I-rGO intercalated with polyiodide was found to be unstable at elevated temperature and when dispersed in organic solvents. The I-rGO exhibited excellent dispersion in dimethylformamide but resulted in a loss of iodine content as exfoliation released weakly-bound intercalated iodine species. The dispersed I-rGO was utilized as a scaffold to self-assemble I-rGO/Al and I-rGO/Al/Bi2O3 nanoenergetic composites. The I-rGO both prevented the phase separation of Al and Bi2O3 particles and provided a source for reactive iodine to etch the alumina shell surrounding Al fuel nanoparticles. Differential scanning calorimetry showed that the use of the I-rGO assembly template reduced the temperature of initiation and peak reaction and produced 70% greater energy release than randomly mixed Al/Bi2O3 nanoenergetic powder. In fact, 95% of the exothermal energy released by the reaction occurred while Al was in the solid state, suggesting that the reaction between free iodine and alumina was significant enough to greatly reduce the diffusion barrier between solid Al fuel and surrounding oxidizer. Further, the underlying conductive I-rGO scaffold reduces electrostatic discharge sensitivity of the nanoenergetic composite by almost four orders of magnitude.</description><subject>alumina shell</subject><subject>aluminum</subject><subject>iodinated graphene</subject><subject>nanoenergetics</subject><issn>2399-1984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkL1rwzAQxUWh0JBm76ixQ91IlhTLYxr6BYEMbWchS6dGwZGMJUPTv742KZ3KDe843t3jfgjdUHJPiZTLktV1QWvJl7oxQsMFmv2NrtAipQMhhEpBxIrP0Pdb1o1vfT7hlAd7wtFhH60POoPFPdjBjPrZ624PAXD88hawDhb7nLDuutYbnX0M2AecoHWFTgmOTTsurdvlgy93DAcdYt5Df_QZsInHLqaxS9fo0uk2weJX5-jj6fF981Jsd8-vm_W28FSIXBjHOC0r5yrpGBNgqaSsagQzpZAVr6XVTktb2gokgKONbkS1co00tIYaOJuju_NdHzt1iEMfxjRFiZpwqYmNmtioM67RfvuPffrBKT4W4YKQUnXWsR9v8HE5</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Wang, Anqi</creator><creator>Bok, Sangho</creator><creator>Mathai, Cherian Joseph</creator><creator>Gangopadhyay, Keshab</creator><creator>McFarland, Jacob</creator><creator>Maschmann, Matthew R</creator><creator>Gangopadhyay, Shubhra</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0003-0107-3597</orcidid><orcidid>https://orcid.org/0000-0002-0740-6228</orcidid></search><sort><creationdate>20201201</creationdate><title>Stability study of iodinated reduced graphene oxide and its application in self-assembled Al/Bi2O3 nanothermite composites</title><author>Wang, Anqi ; Bok, Sangho ; Mathai, Cherian Joseph ; Gangopadhyay, Keshab ; McFarland, Jacob ; Maschmann, Matthew R ; Gangopadhyay, Shubhra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i155t-cf34127ff78f335ed18137b53c2587498dafa8d2d7e8eef1bab576fb8c19e9e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alumina shell</topic><topic>aluminum</topic><topic>iodinated graphene</topic><topic>nanoenergetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Anqi</creatorcontrib><creatorcontrib>Bok, Sangho</creatorcontrib><creatorcontrib>Mathai, Cherian Joseph</creatorcontrib><creatorcontrib>Gangopadhyay, Keshab</creatorcontrib><creatorcontrib>McFarland, Jacob</creatorcontrib><creatorcontrib>Maschmann, Matthew R</creatorcontrib><creatorcontrib>Gangopadhyay, Shubhra</creatorcontrib><jtitle>Nano futures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Anqi</au><au>Bok, Sangho</au><au>Mathai, Cherian Joseph</au><au>Gangopadhyay, Keshab</au><au>McFarland, Jacob</au><au>Maschmann, Matthew R</au><au>Gangopadhyay, Shubhra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability study of iodinated reduced graphene oxide and its application in self-assembled Al/Bi2O3 nanothermite composites</atitle><jtitle>Nano futures</jtitle><stitle>NANOF</stitle><addtitle>Nano Futures</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>4</volume><issue>4</issue><eissn>2399-1984</eissn><coden>NFAUB3</coden><abstract>The direct reduction of graphene oxide (GO) by hydroiodic acid is an established method to produce iodine functionalized reduced GO (I-rGO). However, the stability of the iodine species within I-rGO upon heating and dispersing into different solvents, as required for many applications, has not been examined. Herein we examined the stability of I-rGO and utilized it to promote self-assembled nanoenergetic composites. I-rGO intercalated with polyiodide was found to be unstable at elevated temperature and when dispersed in organic solvents. The I-rGO exhibited excellent dispersion in dimethylformamide but resulted in a loss of iodine content as exfoliation released weakly-bound intercalated iodine species. The dispersed I-rGO was utilized as a scaffold to self-assemble I-rGO/Al and I-rGO/Al/Bi2O3 nanoenergetic composites. The I-rGO both prevented the phase separation of Al and Bi2O3 particles and provided a source for reactive iodine to etch the alumina shell surrounding Al fuel nanoparticles. Differential scanning calorimetry showed that the use of the I-rGO assembly template reduced the temperature of initiation and peak reaction and produced 70% greater energy release than randomly mixed Al/Bi2O3 nanoenergetic powder. In fact, 95% of the exothermal energy released by the reaction occurred while Al was in the solid state, suggesting that the reaction between free iodine and alumina was significant enough to greatly reduce the diffusion barrier between solid Al fuel and surrounding oxidizer. Further, the underlying conductive I-rGO scaffold reduces electrostatic discharge sensitivity of the nanoenergetic composite by almost four orders of magnitude.</abstract><pub>IOP Publishing</pub><doi>10.1088/2399-1984/abc5ae</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0107-3597</orcidid><orcidid>https://orcid.org/0000-0002-0740-6228</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2399-1984 |
ispartof | Nano futures, 2020-12, Vol.4 (4) |
issn | 2399-1984 |
language | eng |
recordid | cdi_iop_journals_10_1088_2399_1984_abc5ae |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | alumina shell aluminum iodinated graphene nanoenergetics |
title | Stability study of iodinated reduced graphene oxide and its application in self-assembled Al/Bi2O3 nanothermite composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20study%20of%20iodinated%20reduced%20graphene%20oxide%20and%20its%20application%20in%20self-assembled%20Al/Bi2O3%20nanothermite%20composites&rft.jtitle=Nano%20futures&rft.au=Wang,%20Anqi&rft.date=2020-12-01&rft.volume=4&rft.issue=4&rft.eissn=2399-1984&rft.coden=NFAUB3&rft_id=info:doi/10.1088/2399-1984/abc5ae&rft_dat=%3Ciop%3Enanofabc5ae%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |