Training the quantum approximate optimization algorithm without access to a quantum processing unit

In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the conce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2020-05, Vol.5 (3), p.34008
Hauptverfasser: Streif, Michael, Leib, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 34008
container_title Quantum science and technology
container_volume 5
creator Streif, Michael
Leib, Martin
description In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.
doi_str_mv 10.1088/2058-9565/ab8c2b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2058_9565_ab8c2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstab8c2b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRUVpoSHNvkt9QN1IsmVLyxL6CAS6SddiLMuJQmy5kkwfX1-ZlNBNNzPDZe5w5yB0S8k9JUIsGeEik7zkS6iFZvUFmp2lyz_zNVqEcCCE5IxSScoZ0lsPtrf9Dse9we8j9HHsMAyDd5-2g2iwG6Lt7DdE63oMx53zNu47_JGqGyMGrU0IODoMZ3syT-J0dextvEFXLRyDWfz2OXp7etyuXrLN6_N69bDJdF6UMRMVK1soRC0YGEPLpgBeMJOCGkkqwWragJScF7xqG9rkspW5BmFYpQkISvI5Iqe72rsQvGnV4NMP_ktRoiZOagKhJhDqxClZ7k4W6wZ1cKPvU8D_138A28RsKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Training the quantum approximate optimization algorithm without access to a quantum processing unit</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Streif, Michael ; Leib, Martin</creator><creatorcontrib>Streif, Michael ; Leib, Martin</creatorcontrib><description>In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/ab8c2b</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>QAOA ; quantum algorithms ; quantum computing ; tensor networks</subject><ispartof>Quantum science and technology, 2020-05, Vol.5 (3), p.34008</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</citedby><cites>FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</cites><orcidid>0000-0002-7509-4748 ; 0000-0001-5446-4677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/ab8c2b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Streif, Michael</creatorcontrib><creatorcontrib>Leib, Martin</creatorcontrib><title>Training the quantum approximate optimization algorithm without access to a quantum processing unit</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.</description><subject>QAOA</subject><subject>quantum algorithms</subject><subject>quantum computing</subject><subject>tensor networks</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtqwzAQRUVpoSHNvkt9QN1IsmVLyxL6CAS6SddiLMuJQmy5kkwfX1-ZlNBNNzPDZe5w5yB0S8k9JUIsGeEik7zkS6iFZvUFmp2lyz_zNVqEcCCE5IxSScoZ0lsPtrf9Dse9we8j9HHsMAyDd5-2g2iwG6Lt7DdE63oMx53zNu47_JGqGyMGrU0IODoMZ3syT-J0dextvEFXLRyDWfz2OXp7etyuXrLN6_N69bDJdF6UMRMVK1soRC0YGEPLpgBeMJOCGkkqwWragJScF7xqG9rkspW5BmFYpQkISvI5Iqe72rsQvGnV4NMP_ktRoiZOagKhJhDqxClZ7k4W6wZ1cKPvU8D_138A28RsKw</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Streif, Michael</creator><creator>Leib, Martin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7509-4748</orcidid><orcidid>https://orcid.org/0000-0001-5446-4677</orcidid></search><sort><creationdate>20200512</creationdate><title>Training the quantum approximate optimization algorithm without access to a quantum processing unit</title><author>Streif, Michael ; Leib, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>QAOA</topic><topic>quantum algorithms</topic><topic>quantum computing</topic><topic>tensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streif, Michael</creatorcontrib><creatorcontrib>Leib, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streif, Michael</au><au>Leib, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training the quantum approximate optimization algorithm without access to a quantum processing unit</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>5</volume><issue>3</issue><spage>34008</spage><pages>34008-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/ab8c2b</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7509-4748</orcidid><orcidid>https://orcid.org/0000-0001-5446-4677</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-9565
ispartof Quantum science and technology, 2020-05, Vol.5 (3), p.34008
issn 2058-9565
2058-9565
language eng
recordid cdi_iop_journals_10_1088_2058_9565_ab8c2b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects QAOA
quantum algorithms
quantum computing
tensor networks
title Training the quantum approximate optimization algorithm without access to a quantum processing unit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20the%20quantum%20approximate%20optimization%20algorithm%20without%20access%20to%20a%20quantum%20processing%20unit&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Streif,%20Michael&rft.date=2020-05-12&rft.volume=5&rft.issue=3&rft.spage=34008&rft.pages=34008-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/ab8c2b&rft_dat=%3Ciop_cross%3Eqstab8c2b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true