Training the quantum approximate optimization algorithm without access to a quantum processing unit
In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the conce...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2020-05, Vol.5 (3), p.34008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 34008 |
container_title | Quantum science and technology |
container_volume | 5 |
creator | Streif, Michael Leib, Martin |
description | In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing. |
doi_str_mv | 10.1088/2058-9565/ab8c2b |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2058_9565_ab8c2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstab8c2b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRUVpoSHNvkt9QN1IsmVLyxL6CAS6SddiLMuJQmy5kkwfX1-ZlNBNNzPDZe5w5yB0S8k9JUIsGeEik7zkS6iFZvUFmp2lyz_zNVqEcCCE5IxSScoZ0lsPtrf9Dse9we8j9HHsMAyDd5-2g2iwG6Lt7DdE63oMx53zNu47_JGqGyMGrU0IODoMZ3syT-J0dextvEFXLRyDWfz2OXp7etyuXrLN6_N69bDJdF6UMRMVK1soRC0YGEPLpgBeMJOCGkkqwWragJScF7xqG9rkspW5BmFYpQkISvI5Iqe72rsQvGnV4NMP_ktRoiZOagKhJhDqxClZ7k4W6wZ1cKPvU8D_138A28RsKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Training the quantum approximate optimization algorithm without access to a quantum processing unit</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Streif, Michael ; Leib, Martin</creator><creatorcontrib>Streif, Michael ; Leib, Martin</creatorcontrib><description>In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/ab8c2b</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>QAOA ; quantum algorithms ; quantum computing ; tensor networks</subject><ispartof>Quantum science and technology, 2020-05, Vol.5 (3), p.34008</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</citedby><cites>FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</cites><orcidid>0000-0002-7509-4748 ; 0000-0001-5446-4677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/ab8c2b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Streif, Michael</creatorcontrib><creatorcontrib>Leib, Martin</creatorcontrib><title>Training the quantum approximate optimization algorithm without access to a quantum processing unit</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.</description><subject>QAOA</subject><subject>quantum algorithms</subject><subject>quantum computing</subject><subject>tensor networks</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtqwzAQRUVpoSHNvkt9QN1IsmVLyxL6CAS6SddiLMuJQmy5kkwfX1-ZlNBNNzPDZe5w5yB0S8k9JUIsGeEik7zkS6iFZvUFmp2lyz_zNVqEcCCE5IxSScoZ0lsPtrf9Dse9we8j9HHsMAyDd5-2g2iwG6Lt7DdE63oMx53zNu47_JGqGyMGrU0IODoMZ3syT-J0dextvEFXLRyDWfz2OXp7etyuXrLN6_N69bDJdF6UMRMVK1soRC0YGEPLpgBeMJOCGkkqwWragJScF7xqG9rkspW5BmFYpQkISvI5Iqe72rsQvGnV4NMP_ktRoiZOagKhJhDqxClZ7k4W6wZ1cKPvU8D_138A28RsKw</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Streif, Michael</creator><creator>Leib, Martin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7509-4748</orcidid><orcidid>https://orcid.org/0000-0001-5446-4677</orcidid></search><sort><creationdate>20200512</creationdate><title>Training the quantum approximate optimization algorithm without access to a quantum processing unit</title><author>Streif, Michael ; Leib, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-8726fa48b82aee16d4a542e119e90782b1da9955457fd1d39f93ca8e27c0a8103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>QAOA</topic><topic>quantum algorithms</topic><topic>quantum computing</topic><topic>tensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streif, Michael</creatorcontrib><creatorcontrib>Leib, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streif, Michael</au><au>Leib, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training the quantum approximate optimization algorithm without access to a quantum processing unit</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>5</volume><issue>3</issue><spage>34008</spage><pages>34008-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/ab8c2b</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7509-4748</orcidid><orcidid>https://orcid.org/0000-0001-5446-4677</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2020-05, Vol.5 (3), p.34008 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_iop_journals_10_1088_2058_9565_ab8c2b |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | QAOA quantum algorithms quantum computing tensor networks |
title | Training the quantum approximate optimization algorithm without access to a quantum processing unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20the%20quantum%20approximate%20optimization%20algorithm%20without%20access%20to%20a%20quantum%20processing%20unit&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Streif,%20Michael&rft.date=2020-05-12&rft.volume=5&rft.issue=3&rft.spage=34008&rft.pages=34008-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/ab8c2b&rft_dat=%3Ciop_cross%3Eqstab8c2b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |